一种单分散荧光微球的制备方法

    公开(公告)号:CN104212087A

    公开(公告)日:2014-12-17

    申请号:CN201410482293.1

    申请日:2014-09-19

    Abstract: 一种单分散荧光微球的制备方法,涉及高分子材料合成领域。本发明是要解决现有制备荧光微球的方法存在的制备过程复杂,荧光物质加入量多的技术问题。本发明的方法为:一、向超纯水中加入苯乙烯单体,搅拌后加入1%过硫酸钾,冷凝回流,得到聚苯乙烯微球;二、将荧光指示剂均匀分散在有机溶剂中,配制成荧光指示剂溶液;三、将聚苯乙烯微球于棕色试样品瓶中,加入荧光指示剂溶液,超声分散,离心,超纯水洗涤至微球表面无荧光指示剂,即完成。本发明操作简单易行,指示剂用量微少,所获得微球荧光强度高、耐光性好,化学稳定性强,呈现单分散性。本发明制备的荧光微球的粒径为100~400nm。本发明应用于荧光微球的制备领域。

    一种制备氧化石墨烯增强磁性水凝胶的方法

    公开(公告)号:CN103601899A

    公开(公告)日:2014-02-26

    申请号:CN201310610991.0

    申请日:2013-11-26

    Abstract: 本发明涉及高分子材料领域,提供了一种制备氧化石墨烯增强磁性水凝胶的方法,所述的氧化石墨烯增强磁性水凝胶成份包括:氧化石墨烯、四氧化三铁以及聚乙烯醇,包括以下步骤:按照1克聚乙烯醇比5毫升超纯水的比例,将聚乙烯醇和超纯水放入容器中缓慢搅拌并加热10分钟;将熔融状态下聚乙烯醇转移到-20℃的环境下冷冻21小时;将冷冻后的聚乙烯醇解冻3小时;重复前述步骤两次后,将氧化石墨烯和四氧化三铁添加到经过三次解冻后的聚乙烯醇中。利用本发明制备出来的氧化石墨烯增强磁性水凝胶,通过添加氧化石墨烯有利增强磁性水凝胶的力学性能,有利克服水凝胶材料存在的冲击强度低,应力下易断裂等缺点。

    一种测量溶解氧浓度的二元共聚荧光微球乳液的制备方法

    公开(公告)号:CN105037608B

    公开(公告)日:2016-11-30

    申请号:CN201510349778.8

    申请日:2015-06-23

    Abstract: 一种测量溶解氧浓度的二元共聚荧光微球乳液的制备方法。本发明涉及一种二元共聚荧光微球乳液的制备方法。本发明是要解决现有指示剂分子容易泄露稳定性差、对氧气的灵敏度不高、分散性差以及现有方法使用溶剂不环保的问题。将甲基丙烯酸甲酯和甲基丙烯酸三氟乙酯混合,得到共聚物乳液,然后向共聚物乳液中加入八乙基卟啉铂,混合均匀后再加入偶氮二异丁腈和十二烷基硫酸钠,在温度为35~45℃和转速为250r/min~300r/min的条件下搅拌,加入超纯水后在室温和超声频率为20kHz~45kHz的条件下超声处理,然后在温度为60~70℃的条件下回流反应,得到二元共聚荧光微球乳液。

    一种制备氧化石墨烯增强磁性水凝胶的方法

    公开(公告)号:CN103601899B

    公开(公告)日:2015-11-18

    申请号:CN201310610991.0

    申请日:2013-11-26

    Abstract: 本发明涉及高分子材料领域,提供了一种制备氧化石墨烯增强磁性水凝胶的方法,所述的氧化石墨烯增强磁性水凝胶成份包括:氧化石墨烯、四氧化三铁以及聚乙烯醇,包括以下步骤:按照1克聚乙烯醇比5毫升超纯水的比例,将聚乙烯醇和超纯水放入容器中缓慢搅拌并加热10分钟;将熔融状态下聚乙烯醇转移到-20℃的环境下冷冻21小时;将冷冻后的聚乙烯醇解冻3小时;重复前述步骤两次后,将氧化石墨烯和四氧化三铁添加到经过三次解冻后的聚乙烯醇中。利用本发明制备出来的氧化石墨烯增强磁性水凝胶,通过添加氧化石墨烯有利增强磁性水凝胶的力学性能,有利克服水凝胶材料存在的冲击强度低,应力下易断裂等缺点。

    一种测量溶解氧浓度的二元共聚荧光微球乳液的制备方法

    公开(公告)号:CN105037608A

    公开(公告)日:2015-11-11

    申请号:CN201510349778.8

    申请日:2015-06-23

    Abstract: 一种测量溶解氧浓度的二元共聚荧光微球乳液的制备方法。本发明涉及一种二元共聚荧光微球乳液的制备方法。本发明是要解决现有指示剂分子容易泄露稳定性差、对氧气的灵敏度不高、分散性差以及现有方法使用溶剂不环保的问题。将甲基丙烯酸甲酯和甲基丙烯酸三氟乙酯混合,得到共聚物乳液,然后向共聚物乳液中加入八乙基卟啉铂,混合均匀后再加入偶氮二异丁腈和十二烷基硫酸钠,在温度为35~45℃和转速为250r/min~300r/min的条件下搅拌,加入超纯水后在室温和超声频率为20kHz~45kHz的条件下超声处理,然后在温度为60~70℃的条件下回流反应,得到二元共聚荧光微球乳液。

Patent Agency Ranking