-
公开(公告)号:CN113805066A
公开(公告)日:2021-12-17
申请号:CN202111102587.3
申请日:2021-09-20
Applicant: 哈尔滨工业大学(威海) , 威海天达汽车科技有限公司
IPC: G01R31/367 , G01R31/396
Abstract: 一种基于改进欧氏距离相似度的串联电池组多故障诊断方法,涉及新能源汽车动力电池系统领域,包括故障识别、定位、检测和隔离四部分。采用交错电压测量设计布置传感器位置,根据串联电路无故障时电压变化一致的原理,通过出现异常电压值的传感器的编号,识别出故障的类型并定位出故障发生的位置。基于改进欧氏距离相似度的检测方法,以测量电压数据集为输入,计算相邻编号传感器测量电压的改进欧氏距离相似度值,根据故障诊断策略可以判断出故障的类型。本发明无需复杂的计算,且不需要增加额外的硬件,就可以诊断出连接松脱故障、传感器故障、内短路和外短路故障;大大简化了故障诊断的难度。
-
公开(公告)号:CN113671380B
公开(公告)日:2024-07-16
申请号:CN202110968446.3
申请日:2021-08-23
Applicant: 哈尔滨工业大学(威海) , 威海天达汽车科技有限公司
IPC: G01R31/367
Abstract: 本发明提供一种基于深度学习的动力电池系统多故障诊断方法,包括故障检测和故障隔离两部分,故障检测针对电池故障早期预警问题,使用编码解码架构的深度学习模型,编码过去一段时间窗口内所测端电压、电流和温度序列,利用之后的电流和温度实测值解码出同步的端电压,与实测对比生成残差序列,经软阈值处理后由多级报警评估策略决定是否触发报警,该报警策略能消除误差波动,防止误报警。之后训练故障隔离深度学习模型,输入软阈值处理后的残差序列,隔离模型输出各故障是触发报警诱因的概率,进而隔离出各故障,从而简化了隔离各传感器故障类型的难度。
-