一种自动生成深度学习框架间操作映射的方法及系统

    公开(公告)号:CN110533162A

    公开(公告)日:2019-12-03

    申请号:CN201910677639.6

    申请日:2019-07-25

    Abstract: 本发明提出一种自动生成深度学习框架间操作映射的方法及系统,包括:根据原深度学习框架和目标深度学习框架间的操作转换规则,抽取框架间操作转换的基本共性,根据基本共性构建转换关系,将转换关系作为基类存储于操作转换的初始描述文件中;获得原深度学习框架下支持的操作集合,遍历操作集合,为每个操作构建继承基类的子类,判断操作集合中操作除了基类中的基本转换规则外是否具有特殊属性,若是则补充特殊属性至子类,构成完备描述文件,否则直接保存子类,构成完备描述文件;将完备描述文件输入至编译器,得到操作转换规则,根据操作转换规则将原深度学习框架下待转换的操作转换为目标深度学习框架下的操作。

    大规模网络数据的多信息来源采集方法和系统

    公开(公告)号:CN109840298A

    公开(公告)日:2019-06-04

    申请号:CN201811637902.0

    申请日:2018-12-29

    Abstract: 本发明涉及一种大规模网络数据的多信息来源采集方法,包括:获取多种传媒上的网络数据所在的信源;生成采集任务,启动并初始化采集节点上的采集器;将该采集任务的参数配置信息加载至该采集器;以该采集器获取该信源的目标信息内容链接,并建立链接队列;以该采集器依次采集该链接队列中对应的目标信息内容为结构化数据;将该结构化数据进行持久化操作,并进行输出。本发明提出的方法可以感知信息来源的变化,能够定点定主题的获取信息来源的网络数据,并且具有泛化能力,采集能力与传媒种类无关。

    一种基于HFile的HBase二级索引更新方法及系统

    公开(公告)号:CN105404676B

    公开(公告)日:2018-08-31

    申请号:CN201510813149.6

    申请日:2015-11-20

    Abstract: 本发明公开了一种基于HFile的HBase二级索引更新方法及系统,该方法包括:解析步骤,监视HBase数据库刷新HFile文件的过程,当针对目标索引列产生了用户操作并生成有HFile文件时,解析该HFile文件并据以更新二级索引表;延迟步骤,在到达HFile文件的compaction操作的启动时间点时,判断该compaction操作所对应的HFile文件是否已经执行该解析该HFile文件的步骤,如果否,延迟该compaction操作的启动时间点,如果是,执行该compaction操作。本发明选择基于HBase文件存储中的HFile这一粒度层次来确定索引更新,不需要大幅度修改HBase源码,不需要维护多余的源表信息,在实现上与用户数据操作异步,不影响用户的时间体验,将索引数据更新维护与源表数据操作解耦。提高了HBase源表数据与二级索引表的同步程度。

    一种基于时间串的论坛页面信息自动抽取方法及系统

    公开(公告)号:CN104268148B

    公开(公告)日:2018-02-06

    申请号:CN201410429698.9

    申请日:2014-08-27

    Abstract: 本发明公开了一种基于时间串的论坛页面信息自动抽取方法及系统。该方法包括创建文件对象模型树,清除文件对象模型树中的无用标签和空标签,根据所述时间串,对所述文件对象模型树进行聚类,生成多个聚类集合,遍历所述聚类集合,获取最大簇,若所述最大簇只包含一个单独节点,则所述论坛页面为单楼页面,根据所述单独节点的时间串,获取所述单楼页面的发帖时间信息;遍历所述文件对象模型树,获取包含网页地址的新节点,通过关键字列表或正则式列表,对网页地址进行关键字查找或正则式查找;若网页地址包含关键字列表中的关键字或所述正则式列表中的正则式,则获取新节点及其子节点包含的文本信息,文本信息为所述单楼页面的用户名信息。

    一种面向网络话题的热度评价方法

    公开(公告)号:CN104615685B

    公开(公告)日:2018-01-26

    申请号:CN201510032875.4

    申请日:2015-01-22

    Abstract: 本发明提供一种面向网络话题的热度评价方法,包括:将网络话题的属性与规则中的属性进行对比;其中,所述规则是经过训练得到的,且用于指示网络话题的属性与热度值的对应关系;以及根据对比的结果得到该网络话题的热度值。本发明定义了数值评价体系,方便了用户理解话题的热度程度,有利于话题之间的热度比较;以及,采用粗糙集相关理论最优化训练集中的不一致性,学习出热度值与属性之间的关系,提供了高热度评价的效果,其中,将无限制的属性值离散化到有限的数值范围内,减小了计算的复杂度;此外,综合多种背景知识的用户的评价得到训练集,使得样本数据更为全面,尽可能地减轻了个体的偏见。

    一种训练用于预测社交网络用户转发消息的模型的方法

    公开(公告)号:CN107566249A

    公开(公告)日:2018-01-09

    申请号:CN201710727462.7

    申请日:2017-08-23

    Abstract: 一种训练用于预测社交网络用户转发消息的模型的方法,包括:1)获得所述社交网络中的历史数据,所述历史数据包括不同用户对同一条消息进行发布、转发的次序;2)根据所述历史数据,求解使得损失函数取值最小时各名用户的影响力和易感性;其中,所述影响力用于描述该名用户发布的消息被转发的概率,所述易感性用于描述该名用户受到发布消息的源发用户的影响而对所述消息进行转发的概率,所述损失函数是发布消息的源发用户的影响力、除所述源发用户之外的其他用户的易感性的函数;以及其中,所述用户的影响力和易感性作为所述用于预测社交网络用户转发消息的模型的参数。

Patent Agency Ranking