利用天空图像的云团高度估算方法及系统

    公开(公告)号:CN111402312B

    公开(公告)日:2023-07-28

    申请号:CN202010157539.3

    申请日:2020-03-09

    Abstract: 本发明公开了一种利用天空图像的云团高度估算方法及系统,本发明提出的方法包括如下步骤:获取第一天空成像仪拍摄到的第一天空图像以及同一时刻第二天空成像仪拍摄到的第二天空图像,其中,所述第一天空成像仪和所述第二天空成像仪位于同一光伏站的不同位置;根据光流法获取所述第一天空图像中的第一点以及和所述第一点配准的所述第二天空图像中的第二点之间的移动距离;根据所述第一点和所述第二点的位置得到所述实际云团的高度估算值;只需要2台天空成像仪相关参数即可估算得到云团高度,本方法简单易操作,填补了现阶段对于光伏站的云团高度的估算的技术的空白,从而为光伏发电功率分钟级预测提供一定数据支持。

    一种基于时空依赖的光伏电站辐照度超短期预测方法及存储介质

    公开(公告)号:CN114819264A

    公开(公告)日:2022-07-29

    申请号:CN202210256463.9

    申请日:2022-03-11

    Abstract: 本发明公开了一种基于时空依赖的光伏电站辐照度超短期预测方法及存储介质,包括如下步骤:步骤S1,以目标电站为起点,向外扩展一定的距离来增加虚拟的基础性电站数量;步骤S2,获取目标电站和各基础性电站的辐照度时间序列数据;步骤S3,计算各基础性电站之间辐照度数据的相关性,将认为具有连接关系的电站视为代表性电站;步骤S4,构建以目标电站和代表性电站为节点的图结构数据;步骤S5,以图结构数据为输入,目标电站辐照度为输出,利用图神经网络对目标电站辐照度进行超短期预测。本发明考虑了目标电站与电站附近区域的辐照度时变模式相关性,模拟并合理筛选出代表性电站,利用卫星云图反演的代表性电站历史辐照度数据,构建了基于图神经网络的辐照度超短期预测模型,提高了预测精度,完全满足光伏发电超短期预测的需要。同时本发明利用目标电站的地面测量辐照度数据对卫星云图反演的辐照度数据进行了系统偏差性错误校正,提高了其后续应用的性能。

    一种基于最优图结构的光伏电站太阳辐照度短期预测方法及存储介质

    公开(公告)号:CN114676893A

    公开(公告)日:2022-06-28

    申请号:CN202210241377.0

    申请日:2022-03-11

    Abstract: 本发明公开了一种基于最优图结构的光伏电站太阳辐照度短期预测方法,包括以下步骤:通过地理范围和方位信息构建目标场站的时空关联场站;获取目标场站和各时空关联场站历史辐照度时间序列数据;计算所述时空关联场站与目标场站数据的相关性,筛选相关性高的时空关联场站;根据筛选得到的时空关联场站,构建图结构数据;建立以图结构数据为输入的图神经网络预测模型,实现辐照度短期预测。相对于现有技术,本发明可以在周围气象数据缺失的情况下充分考虑目标预测场站邻近范围的气象辐照度状况对目标场站的时空相关性影响,且仅需利用历史辐照度数据来实现辐照度的短期预测,易于实现,有助于提高辐照度的短期预测精度,有助于对光伏发电站的规划、选址提供技术支持,同时也有助于为已建成的光伏电站进行合理的能源储存指导。

Patent Agency Ranking