-
公开(公告)号:CN112836822A
公开(公告)日:2021-05-25
申请号:CN202110220275.6
申请日:2021-02-26
Applicant: 浙江工业大学
Abstract: 本发明公开了一种基于宽度学习的联邦学习策略优化方法和装置,包括:(1)对边缘端的本地模型进行模型初始化,同时在服务器端部署宽度学习网络;(2)对本地模型进行预训练,采用主动学习策略筛选出信息熵含量前n大的n个较优特征向量上传至服务器端;(3)服务器端以n个较优特征向量作为宽度学习网络的输入数据,获得输出宽度学习网络对输出数据的预测置信度,并根据预测置信度更新宽度学习网络的参数,同时返回预测置信度至边缘端;(4)边缘端利用返回的预测置信度更新本地模型的参数;(5)迭代(2)~(4),参数确定的本地模型作为特征提取器,参数确定的宽度学习网络作为分类器,组成联邦学习模型,以提高模型的训练速度。
-
公开(公告)号:CN111401407B
公开(公告)日:2021-05-14
申请号:CN202010115357.X
申请日:2020-02-25
Applicant: 浙江工业大学
Abstract: 本发明公开了一种基于特征重映射的对抗样本防御方法和应用,包括:构建特征重映射模型,该特征重映射模型包括用于生成显著特征的显著特征生成模型,用于生成非显著特征的非显著特征生成模型,用于判别显著特征和非显著特征真伪的共享判别模型;根据显著特征生成模型和非显著特征生成模型构建检测器,该检测器用于检测对抗样本和良性样本;根据显著特征生成模型构建重识别器,该重识别器用于识别对抗样本的类别;在进行对抗样本检测时,将检测器连接到目标模型的输出,利用检测器进行对抗样本检测;在进行对抗样本识别时,将重识别器连接到目标模型的输出,利用重识别器进行对抗样本识别。能够实现对抗样本的检测和重识别的双重防御效果。
-
公开(公告)号:CN112434758A
公开(公告)日:2021-03-02
申请号:CN202011499170.0
申请日:2020-12-17
Applicant: 浙江工业大学
Abstract: 本发明公开了一种本发明提供的基于聚类的联邦学习搭便车攻击防御方法,1)利用变分自编码器进行搭便车攻击客户端检测,保护模型的隐私,提高鲁棒性;2)在联邦学习过程中,收集多轮变分自编码器的重建概率并对重建概率聚类后依据时间域上聚类结果的相似度筛选出异常的搭便车攻击客户端;3)接收客户端利用本地样本数据对聚合的全局模型的测试结果,依据测试结果反映客户端是否为搭便车攻击者,从而保护模型的隐私,不会被泄露。
-
公开(公告)号:CN112434280A
公开(公告)日:2021-03-02
申请号:CN202011494403.8
申请日:2020-12-17
Applicant: 浙江工业大学
Abstract: 本发明公开了一种基于区块链的联邦学习防御方法,包括:参与者与权威机构建立智能合约;在册参与者从区块链中获得模型并本地训练,并将训练的本地模型和对应的训练时间上传至对应的区块节点,并广播到区块链中;为每个在册参与者构建噪声委员的噪声委员会,利用噪声委员会为对应的在册参与者的本地模型增加噪声以更新本地模型,获得更新模型;为所有在册参与者构建一个验证委员会,利用验证委员会依据数据集和训练时间验证每个更新模型的预测可靠性和真实性,并将验证通过的更新模型记录在新区块节点;权威机构从区块节点获得所有验证通过的更新模型并聚合,得到聚合模型并广播到区块链中以供下轮在册参与者下载本地训练。
-
公开(公告)号:CN112052933A
公开(公告)日:2020-12-08
申请号:CN202010897967.X
申请日:2020-08-31
Applicant: 浙江工业大学
Abstract: 本发明公开了基于粒子群优化的深度学习模型的安全性测试方法和修复方法,包括:(1)获取良性图像组成样本集,利用良性图像对原始深度学习模型进行预训练;(2)根据覆盖率和输入图像在预训练的原始深度学习模型和其他深度学习模型中针对同一类标标签的类别预测值之间的差异构建目标函数;(3)从样本集中采集部分良性图像作为初始粒子,并初始化粒子的位置和速度,以目标函数最大为目标,采用粒子群优化算法对初始化粒子的位置和速度进行迭代更新,当算法结束时,若不能够获得表示恶性图像的最优粒子,则认为原始深度学习模型安全,若能获得表示恶性图像的最优粒子,则认为原始深度学习模型不安全。
-
公开(公告)号:CN111401407A
公开(公告)日:2020-07-10
申请号:CN202010115357.X
申请日:2020-02-25
Applicant: 浙江工业大学
Abstract: 本发明公开了一种基于特征重映射的对抗样本防御方法和应用,包括:构建特征重映射模型,该特征重映射模型包括用于生成显著特征的显著特征生成模型,用于生成非显著特征的非显著特征生成模型,用于判别显著特征和非显著特征真伪的共享判别模型;根据显著特征生成模型和非显著特征生成模型构建检测器,该检测器用于检测对抗样本和良性样本;根据显著特征生成模型构建重识别器,该重识别器用于识别对抗样本的类别;在进行对抗样本检测时,将检测器连接到目标模型的输出,利用检测器进行对抗样本检测;在进行对抗样本识别时,将重识别器连接到目标模型的输出,利用重识别器进行对抗样本识别。能够实现对抗样本的检测和重识别的双重防御效果。
-
-
-
-
-