-
公开(公告)号:CN104036012B
公开(公告)日:2017-06-30
申请号:CN201410287639.2
申请日:2014-06-24
Applicant: 中国科学院计算技术研究所
IPC: G06F17/30
Abstract: 本发明提供一种字典学习方法,包括:1)基于维度将图像的局部特征向量分为第一分段和第二分段;2)用多个局部特征向量的第一分段构造第一数据矩阵,用多个局部特征向量的第二分段构造第二数据矩阵;3)对第一数据矩阵进行稀疏非负矩阵分解,得到用于对局部特征向量的第一分段进行稀疏编码的第一字典;对第二数据矩阵进行稀疏非负矩阵分解,得到用于对局部特征向量的第二分段进行稀疏编码的第二字典。本发明还提供了基于上述两个字典对图像局部特征进行分段稀疏表示的视觉词袋特征提取方法和相应的检索系统。本发明能够大幅减少内存占用,降低词表训练时间和特征提取时间,特别适合应用于移动终端。
-
公开(公告)号:CN106682731A
公开(公告)日:2017-05-17
申请号:CN201710027447.1
申请日:2017-01-13
Applicant: 首都师范大学 , 中国科学院计算技术研究所
CPC classification number: G06N3/0454 , G06N3/08
Abstract: 本发明提供了一种卷积神经网络的加速方法及装置,涉及图像处理技术领域,其中,该方法包括:在卷积神经网络中设置半停模块;在所述卷积神经网络的预测过程中,当执行至所述半停模块时,计算所述预测过程当前的预测结果;判断当前的所述预测结果是否满足预设预测要求;当当前的所述预测结果满足所述预设预测要求时,停止所述预测过程,并将当前的所述预测结果作为所述卷积神经网络的最终预测结果,否则,继续执行所述预测过程。本发明提供的卷积神经网络的加速方法及装置,可以解决现有技术中存在的CNN运行速度慢,难以执行实时性要求较高的任务的技术问题。
-
公开(公告)号:CN104484869B
公开(公告)日:2017-02-22
申请号:CN201410646014.0
申请日:2014-11-14
Applicant: 中国科学院计算技术研究所
IPC: G06T7/00
Abstract: 本发明提供一种面向排序测度特征的图像匹配方法,该方法首先获取待检测图像的排序测度特征和采样特征序列;对待检测图像的采样特征序列进行哈希,并基于哈希的结果来从图像库的哈希表中选择多个候选图像;然后通过计算该待检测图像的排序测度特征和各个候选图像的排序测度特征的相似度,来确定与该待检测图像匹配的图像。该方法对于图像的排序测度特征采用分级匹配的方法,提高了排序测度特征的匹配速度,使得该特征用于大规模图像匹配成为可能。而且可以通过控制采样分块的数目,调整排序测度特征哈希表的所需的内存开销,使之能用于不同内存大小的计算平台。
-
公开(公告)号:CN103399968B
公开(公告)日:2016-08-10
申请号:CN201310298119.7
申请日:2013-07-16
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提供一种微博信息采集方法及系统,所述方法包括:根据用户提交的查询确定信息类型以及页面链接参数;向微博服务器发送根据所述信息类型和所述页面链接参数构造的页面请求链接,抽取返回页面中的基础信息数据项。所述方法还包括:并行执行信息所在页面的相关信息采集。本发明提供的微博信息采集方法和系统在提高信息采集效率的同时,可以获取更完整的微博信息。
-
公开(公告)号:CN103390162B
公开(公告)日:2016-08-10
申请号:CN201310283875.2
申请日:2013-07-08
Applicant: 中国科学院计算技术研究所
IPC: G06K9/46 , G06K9/64 , H04N21/435
Abstract: 本发明提供一种台标检测方法,所述方法包括:对查询图像进行特征点定位,且对每个特征点提取HOG特征;对查询图像的每个特征点的HOG特征,在特征库中搜索其K个近邻,由每个特征点向对应于该K个近邻的K个投票位置进行投票。所述方法还包括:根据投票位置的得票数,确定所述查询图像中是否存在台标。所述检测方法兼顾效率与准确率,适用于多种应用场合。
-
公开(公告)号:CN105260739A
公开(公告)日:2016-01-20
申请号:CN201510603903.3
申请日:2015-09-21
Applicant: 中国科学院计算技术研究所 , 国家计算机网络应急技术处理协调中心
IPC: G06K9/62
CPC classification number: G06K9/6201
Abstract: 本发明适用于图像检索技术领域,提供了一种面向二进制特征的图像匹配方法及其系统,所述方法包括:特征提取步骤:提取待检测的图片的多个特征点的信息以及多个所述特征点的第一二进制描述子;第一匹配步骤:将多个所述第一二进制描述子与预设的图片库中的所有图片的第二二进制描述子进行比较,找出与多个所述第一二进制描述子匹配数最多的第二二进制描述子所对应的第一图片;第二匹配步骤:将所述待检测的图片和所述第一图片进行特征点的信息的匹配,获得所述待检测图片的匹配结果信息。由此,本发明提高了图像匹配的准确性及速度。
-
公开(公告)号:CN105224619A
公开(公告)日:2016-01-06
申请号:CN201510599948.8
申请日:2015-09-18
Applicant: 中国科学院计算技术研究所
IPC: G06F17/30
CPC classification number: G06F17/30784
Abstract: 本发明提出一种适用于视频/图像局部特征的空间关系匹配方法及系统,该方法包括获取所有所述视频/图像特征点的尺度信息,确定每个所述视频/图像特征点的局部邻域空间,获取所述局部邻域空间内所有所述视频/图像特征点的视觉关键词编码,对所述视觉关键词编码进行量化处理,生成新视觉关键词编码,对所述新视觉关键词编码进行排序,生成所述视频/图像特征点的空间关系编码;比较待匹配视频/图像特征点与所述视频/图像特征点的空间关系编码,构建关系矩阵,计算所述关系矩阵中所述待匹配视频/图像特征点与所述视频/图像特征点空间关系编码相似度,融合所述待匹配视频/图像特征点与所述视频/图像特征点的视觉相似度及空间关系编码相似度。
-
公开(公告)号:CN105184808A
公开(公告)日:2015-12-23
申请号:CN201510670734.5
申请日:2015-10-13
Applicant: 中国科学院计算技术研究所
IPC: G06T7/00
CPC classification number: G06T2207/10004
Abstract: 本发明提供一种光场图像前后景自动分割方法,包括:1)基于超像素分割算法将光场图像划分为多个基本区域;2)提取每个基本区域的聚焦度;3)生成各种可能的前后景分割方案,选出使得总代价最小的前后景分割方案,所述总代价是各个基本区域被划分为前景或者背景的单区域代价的和,每个基本区域的所述单区域代价根据该基本区域的聚焦度得出;或者总代价是所有基本区域的单区域代价与相邻基本区域的区域相似度代价的加权和,所述相邻基本区域的区域相似度代价根据被分别划分为前景和后景的两个相邻基本区域的图像特征距离得出。本发明能够对景深差异较小的光场图像进行准确的前后景自动分割,提高分割的准确度;并且本发明的计算量较小。
-
公开(公告)号:CN104881668A
公开(公告)日:2015-09-02
申请号:CN201510241287.1
申请日:2015-05-13
Applicant: 中国科学院计算技术研究所
IPC: G06K9/46
CPC classification number: G06K9/4604 , G06K9/4671
Abstract: 本发明公开了一种基于代表性局部模式的图像指纹提取方法及系统,涉及图像处理领域,该方法包括将库图像进行图像攻击模拟处理,生成新库图像,并提取所述库图像与所述新库图像的关键点,根据所述关键点,获取局部区块,并根据所述局部区块,生成局部模式并建立局部模式库,从所述局部模式库中获取代表性局部模式;根据所述代表性局部模式,建立所述库图像与所述新库图像的图像指纹,并将所述图像指纹存入图像指纹库;获取新图像,提取所述新图像的新图像指纹,将所述新图像指纹与所述图像指纹库中的图像指纹进行比对,查找库图像中与所述新图像向对应的图像。本发明占用内存少,可以使用优化的机器指令进行加速匹配,适于大规模的图像拷贝检测。
-
公开(公告)号:CN104735351A
公开(公告)日:2015-06-24
申请号:CN201510100489.4
申请日:2015-03-06
Applicant: 中国科学院计算技术研究所
Abstract: 本发明提供一种高分辨率光场图片重建方法,包括:1)获取所拍摄景象和视角均完全相同的光场图片和数码图片;2)根据所述光场图片与所述数码图片像素的对应关系,将所述光场图片中的光场信息映射到所述数码图片的相应像素上;3)对于映射了光场信息的数码图片中光场信息未知的每一个像素,根据该像素与周围光场信息已知像素的距离,计算出该像素的光场信息。本发明还提供了相应的用于高分辨率光场图片重建的成像装置。本发明显著提高了光场图片的空间分辨率,同时还具有计算复杂度低,处理速度快的优势。
-
-
-
-
-
-
-
-
-