-
公开(公告)号:CN106686264A
公开(公告)日:2017-05-17
申请号:CN201610965273.9
申请日:2016-11-04
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04M3/436
Abstract: 本发明属于电信中有害电话监控技术领域,尤其是涉及一种诈骗电话筛选分析方法及系统。本发明的系统利用诈骗电话分析模型对历史数据进行分析,确定模型各特征权重值;对实时数据进行分析检测,检测结果与设定阈值比较给出诈骗电话的置信度。整个系统由数据查询管理系统、实时检测系统、模型自学习系统、趋势预测系统、数据存储系统组成。数据查询管理系统提供全量话单查询、诈骗话单查询、模型参数管理、自学习管理、趋势预测分析功能。实时检测系统通过诈骗电话发现模型实时分析、检测话单数据,发现诈骗电话。模型自学习系统对历史话单数据分析,通过自学习算法不断优化模型参数。趋势预测系统提供对未来诈骗电话趋势和变化进行预测。数据存储系统采用分布式存储系统,大数据分析处理引擎为整个系统提供快速数据抓取、数据分发、数据查询功能。
-
公开(公告)号:CN106201441A
公开(公告)日:2016-12-07
申请号:CN201610539099.1
申请日:2016-07-08
Applicant: 汉柏科技有限公司 , 国家计算机网络与信息安全管理中心
CPC classification number: G06F9/30 , G06F9/5027 , G06F9/5044 , G06F9/505
Abstract: 本发明实施例公开一种网络设备中CPU利用率的获取方法及装置。所述方法包括:获取在预设时间段内CPU执行完整的工作循环的循环次数,以及在所述循环次数内、在报文处理流程中未接收到报文的空转次数;获取所述非报文处理流程对应的第一权重值和所述报文处理流程对应的第二权重值;根据所述循环次数、所述空转次数、所述第一权重值和所述第二权重值,获取CPU利用率。所述装置用于执行所述方法。本发明实施例提供的方法,可准确地获取到网络设备中的CPU利用率。
-
公开(公告)号:CN102542290A
公开(公告)日:2012-07-04
申请号:CN201110435765.4
申请日:2011-12-22
Applicant: 国家计算机网络与信息安全管理中心 , 中国互联网协会
Abstract: 本发明公开了一种垃圾邮件图像识别方法。该方法包括:将邮件图像划分为文本区域和非文本区域;将所述非文本区域从空域变换到频域,并分解为水平、垂直和对角方向的细节子图像;对各个细节子图像中的高频系数进行统计分析,利用噪声连通域面积的总和与非文本区域面积的比值度量邮件图像的含噪声程度;根据所述邮件图像的含噪声程度是否达到了预设门限值,判断所述邮件图像是否为垃圾邮件图像。借助于本发明的技术方案,提高了通过含噪声程度进行垃圾邮件图像识别技术的识别精度。本发明还公开了一种垃圾邮件图像识别装置,包括图像区域划分模块、图像分解模块、含噪程度计算模块和图像判别模块。
-
公开(公告)号:CN113052270B
公开(公告)日:2024-12-24
申请号:CN202110503779.9
申请日:2021-05-10
Applicant: 清华大学 , 国家计算机网络与信息安全管理中心
IPC: G06F18/21 , G06F18/241 , G06F18/22
Abstract: 本申请涉及一种分类精度评价方法、装置、计算机设备和存储介质。所述方法包括:获取有害语音样本集;将有害语音样本集中的每个有害语音样本输入待评价的有害语音分类模型中进行分类,得到预测类别标签;在预设的分类层级中,确定与预测类别标签和有害语音样本的样本类别标签对应的目标分类;根据目标分类计算待评价的有害语音分类模型的分类精确程度。本方案中,对有害语音样本进行了多层次的分类(即分类层级),然后在分类层级中确定预测类别标签和样本类别标签共同所属的目标分类,目标分类可以反映预测类别标签和样本类别标签的匹配度,进而根据目标分类确定分类模型的分类精确程度,能够有效的提高分类模型评价的准确度。
-
公开(公告)号:CN115914056B
公开(公告)日:2024-12-17
申请号:CN202110914688.4
申请日:2021-08-10
Applicant: 国家计算机网络与信息安全管理中心
IPC: H04L43/50 , H04L65/1104 , H04L67/02 , H04L67/141
Abstract: 本申请提供一种网络电话服务端的识别方法及装置、系统、电子设备,该方法包括:获取SIP流量,对SIP流量进行分析,获得目的IP信息;根据目的IP信息,对目标服务端的通信端口进行扫描,查找开放服务的目标端口;与开放服务的目标端口建立连接,并向开放服务的目标端口发送HTTP报文;根据HTTP报文的响应消息,确定目标服务端是否为网络电话服务端。由此可以高效地过滤出网络中大部分的VoIP运营平台信息,比传统的被动解析方式需要的资源更少且更加灵活,比传统的主动方式更加高效、目的性更强。在消耗少量资源的情况下,可以高效的进行定向分析,大大提高整体分析的高效性。
-
公开(公告)号:CN111858925B
公开(公告)日:2023-08-18
申请号:CN202010501138.5
申请日:2020-06-04
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06F16/35 , G06F16/335 , G06F40/211 , G06F40/289 , G06Q30/018 , G06Q50/32
Abstract: 本发明公开了电信网络诈骗事件的剧本提取方法、装置、电子设备以及存储介质。该方法包括:获取已知主题类别的电信网络诈骗事件文本;对文本进行分句操作;提取文本中各单句的关键词;利用预先建立的BERT模型提取已知主题类别的电信网络诈骗事件文本中各单句的关键词向量;基于任意两个具有相邻句序的单句的关键词向量的均值向量之间的空间距离,对两个具有相邻句序的单句进行剧情阶段的划分;获取各阶段所包含的单句的关键词作为所属的主题类别下电信网络诈骗事件中各阶段的情节特征的表示。本发明实现了对于电信网络诈骗事件剧情阶段的划分,提取出有助于识别电信网络诈骗事件的特征,从而达到精准提取电信网络诈骗事件剧本的目的。
-
公开(公告)号:CN113676604B
公开(公告)日:2023-03-31
申请号:CN202010403400.2
申请日:2020-05-13
Applicant: 中国移动通信有限公司研究院 , 中国移动通信集团有限公司 , 国家计算机网络与信息安全管理中心
IPC: H04M7/00
Abstract: 本发明实施例公开了一种语音处理方法、相关设备和存储介质。所述方法包括:第一网络设备接收到呼叫请求消息,所述呼叫请求消息中包括主叫号码和被叫号码;判断所述主叫号码是否满足预设触发条件;在判定所述主叫号码满足预设触发条件的情况下,将所述呼叫请求消息转发至接入能力网元;所述接入能力网元用于从业务服务器获得针对所述呼叫请求消息的呼叫控制策略、并根据所述呼叫控制策略对所述呼叫请求消息对应的呼叫事件进行处理。
-
公开(公告)号:CN113286035B
公开(公告)日:2022-12-30
申请号:CN202110529065.5
申请日:2021-05-14
Applicant: 国家计算机网络与信息安全管理中心 , 恒安嘉新(北京)科技股份公司
Inventor: 刘发强 , 张震 , 石瑾 , 李鹏 , 刁则鸣 , 黄远 , 仇艺 , 张梦影 , 袁堂岭 , 尚程 , 阿曼太 , 梁彧 , 蔡琳 , 杨满智 , 王杰 , 田野 , 金红 , 陈晓光 , 傅强
Abstract: 本发明实施例公开了一种异常呼叫检测方法、装置、设备及介质。该方法包括:获取多种类型的通话记录描述数据;根据各通话记录描述数据形成至少一个多源数据分组,多源数据分组中包括至少两种类型的通话记录描述数据;将每个多源数据分组中包括的各通话记录描述数据进行关联分析,形成与每个多源数据分组分别对应的异常呼叫检测结果。在上述技术方案中,通过对多种类型的通话记录描述数据进行关联分析,得到异常呼叫检测结果,实现了有效地对异常呼叫进行安全监管,提高了异常呼叫的检测精确度。
-
公开(公告)号:CN108460772B
公开(公告)日:2022-05-17
申请号:CN201810150076.0
申请日:2018-02-13
Applicant: 国家计算机网络与信息安全管理中心
IPC: G06T7/11 , G06T7/136 , G06T7/155 , G06V10/764 , G06K9/62
Abstract: 本发明提供了一种基于卷积神经网络的广告骚扰传真图像检测系统及方法,包括关键字区域提取模块,所述关键字区域提取模块用于确定待检测传真图像的关键字可疑区域;神经网络置信度分析模块,所述神经网络置信度分析模块与所述关键字区域提取模块相连,所述神经网络置信度分析模块用于对所述关键字可疑区域的文字进行识别,实现传真图像的分类。本发明通过关键字区域提取模块对关键字可疑区域进行提取,自动化运行,工作效率高;通过神经网络置信度分析模块对关键字可疑区域的文字进行识别,实现广告骚扰传真的分类判断,节约时间,管控能力强,使得本发明具有工作效率高,管控能力强的特点。
-
公开(公告)号:CN110895933B
公开(公告)日:2022-05-03
申请号:CN201811030952.2
申请日:2018-09-05
Applicant: 中国科学院声学研究所 , 国家计算机网络与信息安全管理中心
Abstract: 本发明公开了一种基于空时残差神经网络的远场语音识别方法,所述方法包括:步骤1)构建并训练空时残差神经网络ST‑RES‑LSTM,该神经网络是在的空间和时间两个维度上都引入了残差结构的LSTM神经网络;步骤2)利用训练好的空时残差神经网络ST‑RES‑LSTM进行声学模型训练,并生成每一帧的分类概率;步骤3)构建语音识别解码网络,并使用步骤2)的训练好的声学模型进行维特比解码出最终识别结果。本发明的方法在LSTM网络的空间和时间两个维度都引入残差结构,既能缓解层数加深带来的梯度消失问题,又能缓解LSTM在时间维度存在的梯度消失问题,从而提高语音识别的性能。
-
-
-
-
-
-
-
-
-