-
公开(公告)号:CN118378255B
公开(公告)日:2024-09-10
申请号:CN202410825770.3
申请日:2024-06-25
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 本发明属于数据安全技术领域,更具体地,涉及一种差分隐私保护约束下抗投毒攻击的联邦学习方法、装置及计算机可读存储介质。包括在客户端定义差分隐私;客户端获取服务端全局模型后使用自身的训练数据集更新本地模型,计算差分隐私噪声并添加到各个客户端的本地模型中;将添加了差分隐私噪声的本地模型发送至服务端,选出恶意客户端;服务端为各个客户端分配权重,然后将各个客户端的本地模型进行聚合得到训练好的全局模型并发送至各个客户端;各个客户端获取训练好的全局模型,完成一次迭代,达到设置训练轮次之后,输出最终全局模型并结束训练。本发明解决了现有技术中投毒攻击防御方案尚无法在差分隐私保护下有效检测出恶意客户端。
-
公开(公告)号:CN117932125B
公开(公告)日:2024-06-14
申请号:CN202410331043.1
申请日:2024-03-22
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06F16/903 , G06F21/62 , G06F21/60 , G06F16/901
Abstract: 本发明属于数据安全的技术领域,更具体地,涉及一种支持隐私保护的可验证空间关键字查询方法及装置。该方法包括:数据拥有者端加密其空间数据集,构建密文索引,并将空间数据集和密文索引上传云服务器端;查询用户端根据数据拥有者端提供的密钥信息和辅助参数生成搜索令牌并提交云服务器端;云服务器端根据搜索令牌检索密文索引,并向查询用户端返回相应的空间对象密文信息和验证信息;查询用户端基于密钥信息、辅助验证信息、空间对象密文信息和验证信息,先进行本地验证,再对验证通过的空间对象密文信息进行解密。本发明用于在用户给定的空间范围内返回其所期望的空间数据对象,在保证安全性的同时实现高效搜索,并支持对结果的验证。
-
公开(公告)号:CN118070929A
公开(公告)日:2024-05-24
申请号:CN202410465104.3
申请日:2024-04-18
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
IPC: G06N20/20 , G06F18/2431
Abstract: 本发明属于分布式机器学习系统优化的技术领域,涉及一种分布式机器学习系统中梯度异构双重优化方法、装置、电子设备及存储介质。该方法包括:构建包含#imgabs0#个节点和单个参数服务器的分布式学习系统,节点为诚实节点和恶意节点;基于诚实节点从其局部数据集选取的数据样本,计算并修正数据样本的局部梯度,以迭代优化本地梯度差异;引入动量项,将修正后的局部梯度与上一迭代轮次的动量向量结合,再将得到的当前迭代轮次的动量向量归一化为单位动量向量发送给参数服务器,得到局部聚合结果;对局部聚合结果进行全局聚合,以迭代优化全局梯度差异。本发明解决了由于本地梯度差异和全局梯度差异而制约系统在面对恶意节点和攻击时的鲁棒性表现的问题。
-
-