-
公开(公告)号:CN116822661A
公开(公告)日:2023-09-29
申请号:CN202311100506.5
申请日:2023-08-30
Applicant: 山东省计算中心(国家超级计算济南中心) , 齐鲁工业大学(山东省科学院)
Abstract: 一种基于双服务器架构的隐私保护可验证联邦学习方法,属于人工智能的技术领域。包括:密钥生成中心、客户端、聚合服务器和辅助服务器;本发明采用中国剩余定理CRT对梯度进行压缩,并使用Paillier同态加密算法对本地梯度进行加密;同时,为避免单个服务器被攻陷成为恶意服务器,进而会威胁数据安全,本发明将聚合梯度和聚合哈希标签的计算过程分别分配给了聚合服务器AS和辅助服务器SS两个不同的服务器。本发明通过辅助服务器SS所聚合的哈希标签来辅助客户端验证聚合服务器AS聚合结果的正确性,为联邦学习训练模型的准确性提供了有效保障。