-
公开(公告)号:CN115659887A
公开(公告)日:2023-01-31
申请号:CN202211362803.2
申请日:2022-11-02
Applicant: 东南大学
IPC: G06F30/3315 , G06F17/13
Abstract: 本发明提出一种低电压标准逻辑单元门延时模型的建立方法,提高先进工艺近阈值工作电压条件下,电路时序行为描述的准确性。首先,根据工艺参数,晶体管宽度Wn、晶体管长度L、热电压vt、阈值电压Vth,以及经验参数n、I0、γ、λ,建立亚阈值电压下晶体管的沟道电流模型。其次,基于基尔霍夫电流定律,通过晶体管沟道电流模型建立标准逻辑门单元(反相器、二输入与非门、二输入或非门)输出电压随时间变化的解析式。最后,根据输出电压解析式,计算出标准逻辑单元门的延时。
-
公开(公告)号:CN114330193A
公开(公告)日:2022-04-12
申请号:CN202111570351.2
申请日:2021-12-21
Applicant: 东南大学
IPC: G06F30/367 , G06F30/373 , G06F115/02
Abstract: 本发明公开并保护了一种基于参数选择的宽电压电路延时估计方法,该方法基于低阶张量近似模型,由于该模型存在秩与多项式度两个待定参数,优化该两个参数的选取将会给低阶张量近似近似模型带来速度与精度的明显提升,减少蒙特卡罗仿真次数,实现一种精确有效的时序分析方法,为电路设计提供指导。首先提取出电路的关键路径,应用拉丁超立方对工艺参数空间进行高效采样,并通过SPICE得到相应的关键信息,以此构建初始训练集,根据本发明所给出的参数查找表,找到当前应用环境下优化的参数构建训练低阶张量近似电路延时模型。
-
公开(公告)号:CN106872780A
公开(公告)日:2017-06-20
申请号:CN201710052697.0
申请日:2017-01-24
Applicant: 东南大学
IPC: G01R25/00
CPC classification number: G01R25/00
Abstract: 本发明的固支梁T型结间接加热在线式未知频率微波相位检测器由六端口固支梁耦合器,通道选择开关,微波频率检测器,微波相位检测器级联构成;六端口固支梁耦合器由共面波导,介质层,空气层和固支梁构成,两个固支梁之间的共面波导长度为λ/4;六端口固支梁耦合器的第一端口到第三端口、第四端口以及第一端口到第五端口、第五端口的耦合度分别相同,待测信号经第一端口输入,由第二端口输出下级处理电路,由第四端口和第六端口输出微波相位检测器,由第三端口和第五端口输出通道选择开关;通道选择开关的第七端口和第八端口接间接加热式微波功率传感器,通道选择开关的第九端口和第十端口接微波频率检测器;实现了对未知频率信号的0‑360°相位在线检测。
-
公开(公告)号:CN106841788A
公开(公告)日:2017-06-13
申请号:CN201710052662.7
申请日:2017-01-24
Applicant: 东南大学
IPC: G01R25/00
CPC classification number: G01R25/00
Abstract: 本发明的固支梁T型结间接加热在线式已知频率微波相位检测器由六端口固支梁耦合器、微波相位检测器和间接加热式微波功传感器级联构成;六端口固支梁耦合器由共面波导,介质层,空气层和固支梁构成;共面波导制作在SiO2层上,固支梁的下方沉积介质层,并与空气层共同构成耦合电容结构,两个固支梁之间的共面波导长度为λ/4;六端口固支梁耦合器的第一端口到第三端口、第四及到第一端口到第五端口、第六端口的功率耦合度相同,待测信号经六端口固支梁耦合器的第一端口输入,由第三端口和第五端口输出到间接加热式微波功率传感器,由第四端口和第六端口输出到微波相位检测器,由第二端口输出到下级处理电路;最终实现了对已知频率信号的0‑360°相位在线检测。
-
公开(公告)号:CN106841787A
公开(公告)日:2017-06-13
申请号:CN201710052657.6
申请日:2017-01-24
Applicant: 东南大学
Abstract: 本发明的固支梁T型结直接加热在线式未知频率微波相位检测器由六端口固支梁耦合器,通道选择开关,微波频率检测器,微波相位检测器,直接加热式微波功率传感器级联构成,两个固支梁之间的共面波导长度为λ/4;六端口固支梁耦合器的第一端口到第三端口、第四端口以及第一端口到第五端口、第六端口的功率耦合度分别相同,待测信号经第一端口输入,并由第二端口输出到下级处理电路,由第四端口和第六端口输出到微波相位检测器,由第三端口和第五端口输出到通道选择开关;通道选择开关的第七端口和第八端口接直接加热式微波功率传感器,通道选择开关的第九端口和第十端口接微波频率检测器;最终实现了对未知频率信号的0‑360°相位在线检测。
-
公开(公告)号:CN103915458B
公开(公告)日:2016-06-29
申请号:CN201410097924.8
申请日:2014-03-17
Applicant: 东南大学
IPC: H01L27/146
Abstract: 自供电射频收发组件中硅基热电-光电集成微传感器放置在射频功率放大器的顶部,它是由几个相同传感器模块组成的阵列结构。其中每个传感器模块由许多组热电偶串联连接。传感器的热端放置在功率放大器热量集中的部位(散热板),而冷端远离热量集中的部分且紧靠金属外壳(热沉板),以达到冷热两端形成较大温差。基于Seebeck效应在传感器阵列上产生直流电压的输出,该直流电压对充电电池进行充电储能;在传感器的半导体热偶臂的顶部制作一个PN结,并构成电流通路正向有序排列,并在PN结上方的热沉板开孔以增加光照面积,形成可以收集光能的光电式微传感器。能够同时收集光能、热能的能量实现自供电。相比传统的收集单一能量的自供电传感器。
-
公开(公告)号:CN103910326B
公开(公告)日:2016-04-13
申请号:CN201410097839.1
申请日:2014-03-17
Applicant: 东南大学
Abstract: 自供电射频收发组件中硅基热电和光电传感器放置在射频功率放大器的顶部,它是由几个相同传感器模块组成的阵列结构。其中每个传感器模块由许多组热电偶串联连接。传感器的热端放置在功率放大器热量集中的部位(散热板),而冷端远离热量集中的部分且紧靠金属外壳(热沉板),以达到冷热两端形成较大温差。基于Seebeck效应在传感器阵列结构上产生直流电压的输出,该直流电压对充电电池进行充电储能;利用热沉板上表面的一层光伏材料,可以有效地吸收光能,形成可以收集光能的光电式传感器。能够同时收集光能、热能的能量实现自供电,相比传统的收集单一能量的自供电传感器,本发明体积更小,供电能力大大提高。
-
公开(公告)号:CN103904764B
公开(公告)日:2016-04-13
申请号:CN201410098872.6
申请日:2014-03-17
Applicant: 东南大学
CPC classification number: Y02E10/566
Abstract: 自供电射频收发组件中砷化镓基热电和光电传感器由几个相同传感器模块组成的阵列结构。其中每个传感器模块由许多组热电偶串联连接。传感器的热端放置在功率放大器热量集中的部位(散热板),而冷端远离热量集中的部分且紧靠金属外壳(热沉板),以达到冷热两端形成较大温差。基于Seebeck效应在热电堆阵列结构上产生直流电压的输出,该直流电压对充电电池进行充电储能;利用热沉板上表面的一层光伏材料,可以有效地吸收光能,形成可以收集光能的光电式微传感器。能够同时收集光能、热能的能量实现自供电,相比传统的收集单一能量的自供电传感器,本发明体积更小,供电能力大大提高。
-
-
-
-
-
-
-