一种基于超图信号分解的联邦跨域推荐方法

    公开(公告)号:CN118277669A

    公开(公告)日:2024-07-02

    申请号:CN202410462841.8

    申请日:2024-04-17

    Abstract: 本发明公开了一种基于超图信号分解的联邦跨域推荐方法,属于数据挖掘技术领域。解决了现有技术中传统的跨域推荐方法的难以避免全局模型混入领域特有信息的问题;本发明设定总通信轮次,使用本地数据初始化训练客户端模型,服务器随机选取客户端训练;客户端使用本地的低通超图滤波器和高通超图滤波器分别得到领域特定和领域共享的用户表征和物品表征;客户端和服务器之间运行本地‑全局知识迁移算法;服务器对得到的领域共享的用户表征和更新后的低通超图滤波器的模型进行聚合;服务器将聚合后的全局用户表征和聚合后的低通超图滤波器的模型发送给客户,重复上述步骤直至执行完总通信轮次。本发明避免了出现负迁移问题,可以应用于联邦跨域推荐。

    一种基于动态亲和力聚合的联邦学习方法及相关设备

    公开(公告)号:CN116306986A

    公开(公告)日:2023-06-23

    申请号:CN202211569899.X

    申请日:2022-12-08

    Abstract: 本发明公开一种基于动态亲和力聚合的联邦学习方法及相关设备,所述方法包括:服务器端发送初始化模型至所有客户端;客户端利用预存的本地数据对初始化模型进行模型训练,得到经过训练后的模型参数后;服务器端根据类别数量组成数据分布向量后,计算所有客户端之间的亲和力值;服务器端根据经过训练后的模型参数和亲和力值生成每个客户端在本轮中的个性化全局模型;客户端在每轮通信上结合个性化全局模型更新经过训练后的模型参数,直至服务器端执行完所有的通信轮次。通过服务器端根据经过训练后的模型参数和所有客户端之间的亲和力值,生成每个客户端的个性化全局模型,以便客户端进行更新训练后的模型参数,从而有效地提升联邦学习的模型性能。

    一种基于动态亲和力聚合的联邦学习方法及相关设备

    公开(公告)号:CN116306986B

    公开(公告)日:2024-01-12

    申请号:CN202211569899.X

    申请日:2022-12-08

    Abstract: 本发明公开一种基于动态亲和力聚合的联邦学习方法及相关设备,所述方法包括:服务器端发送初始化模型至所有客户端;客户端利用预存的本地数据对初始化模型进行模型训练,得到经过训练后的模型参数后;服务器端根据类别数量组成数据分布向量后,计算所有客户端之间的亲和力值;服务器端根据经过训练后的模型参数和亲和力值生成每个客户端在本轮中的个性化全局模型;客户端在每轮通信上结合个性化全局模型更新经过训练后的模型参数,直至服务器端执行完所有的通信轮次。通过服务器端根据经过训练后的模型参数和所有客户端之间的亲和力值,生成每个客户端的个性化全局模型,以便客户端进行更新训练后的模型参数,从而有效地提(56)对比文件应作斌等.动态聚合权重的隐私保护联邦学习框架《.网络与信息安全学报》.2022,第8卷(第5期),56-65.陈飞扬等.FCAT-FL:基于Non-IID数据的高效联邦学习算法《.南京邮电大学学报(自然科学版)》.2022,第42卷(第3期),90-99.Zhiyuan Zhao等.A Dynamic ReweightingStrategy For Fair Federated Learning.《2022 IEEE International Conference onAcoustics, Speech and Signal Processing》.2022,8772-8776.You Jun Kim等.Blockchain-based Node-aware Dynamic Weighting Methods forImproving Federated Learning Performance.《2019 20th Asia-Pacific NetworkOperations and Management Symposium》.2019,1-4.

Patent Agency Ranking