基于多尺度深度卷积循环神经网络的刀具磨损监测方法

    公开(公告)号:CN110509109B

    公开(公告)日:2021-04-13

    申请号:CN201910638155.0

    申请日:2019-07-16

    Abstract: 本发明公开了一种基于多尺度深度卷积循环神经网络的刀具磨损监测方法,方法包括以下步骤:基于多路传感器测量的刀具数据预处理数据,构造输入矩阵;构造多尺度卷积神经网络,获取多尺度特征,多尺度卷积神经网络的每个分支基于最大值池化后的输出进行特征融合,最终获得多尺度特征;构造深度循环GRU网络以提取不同时间尺度的特征和表示,深度循环GRU网络包括第一层GRU网络和第二层GRU网络,第二层GRU网络的单元数比第一层GRU网络的单元数多,多尺度特征经过深度循环GRU网络处理后获得不同时间尺度的特征和表示;基于特征构造全连接层,将特征映射到样本标记空间;基于全连接层的输出结果构造线性回归层,获得刀具磨损量。

    基于多尺度深度卷积循环神经网络的刀具磨损监测方法

    公开(公告)号:CN110509109A

    公开(公告)日:2019-11-29

    申请号:CN201910638155.0

    申请日:2019-07-16

    Abstract: 本发明公开了一种基于多尺度深度卷积循环神经网络的刀具磨损监测方法,方法包括以下步骤:基于多路传感器测量的刀具数据预处理数据,构造输入矩阵;构造多尺度卷积神经网络,获取多尺度特征,多尺度卷积神经网络的每个分支基于最大值池化后的输出进行特征融合,最终获得多尺度特征;构造深度循环GRU网络以提取不同时间尺度的特征和表示,深度循环GRU网络包括第一层GRU网络和第二层GRU网络,第二层GRU网络的单元数比第一层GRU网络的单元数多,多尺度特征经过深度循环GRU网络处理后获得不同时间尺度的特征和表示;基于特征构造全连接层,将特征映射到样本标记空间;基于全连接层的输出结果构造线性回归层,获得刀具磨损量。

Patent Agency Ranking