Abstract:
A method of controlling a full-scale converter system in which both the grid-side inverter unit and the generator-side inverter unit have a series-connection of parallel inverters and form a generator-side and grid-side voltage-center-point at a voltage level between the inverters connected in series. The voltage-center-points are electrically connected by a center-line conductor. Conversion operation with a de-rated maximum active power-output is performed in response to at least one of (i) the grid-side inverter and (ii) the generator-side inverter of the first converter-string being disabled, by disabling active power production of at least one of (i) the grid-side inverter and (ii) the generator-side inverter of the second converter-string, or correspondingly reducing active power production of the second converter-string, thereby preventing a compensation current along the center-line conductor.
Abstract:
The present invention relates to a method for operating a wind power facility in order to provide reactive power support to a power grid, the method comprising the step of increasing an amount of reactive power injected into the power grid, decreasing an amount of active power injected into the power grid by a certain amount, and dissipating and/or storing essentially said certain amount of active power in power dissipation and/or power storage means. The wind power facility may comprise a wind turbine or a wind power plant.
Abstract:
A method of operating a wind turbine is disclosed, the wind turbine comprising a power generator, a machine-side converter connected to the power generator, a line-side converter connected to a power grid through associated power components, and a DC-link connected between the machine-side converter and the line-side converter. The method includes monitoring the power grid for overvoltage events, and upon detecting an overvoltage event: (1) disabling active operation of the machine-side converter and the line-side converter, (2) enabling an AC load dump connected between the machine side converter and the power generator in order to dissipate power output from the power generator, (3) waiting for a waiting period, and (4) enabling active operation of the line-side converter and the machine converter when the overvoltage event ends within the waiting period.
Abstract:
A method of controlling a wind turbine generator is provided, the wind turbine generator converting mechanical energy to electrical. The method comprises: determining an electromagnetic power reference representing the electromagnetic power generated by the wind turbine generator, wherein the electromagnetic power reference is determined based on a desired output of the wind turbine generator; controlling the electrical power generated by the wind turbine generator using a control signal, wherein the control signal is derived from the electromagnetic power reference and is modified in dependence on an inverse power function of the wind turbine generator by incorporating minimal copper loss constraint and stator voltage limiting constraint such that non-linearity of the wind turbine generator plant is compensated in the control loop and it operates at its maximum efficiency. One effect of the method is that classical linear control loop design can be employed in spite of the plant being a non-linear identity.
Abstract:
Embodiments provide a reconfigurable power converter module for a wind turbine facility adapted to supply electric power to an associated power supply grid. The reconfigurable power converter module includes a frequency converter operatively connected to filter means, wherein the frequency converter and the filter means are mutually reconfigurable so as to suppress internal and/or external resonances or harmonics.
Abstract:
This disclosure proposes a topology that integrates a DC chopper into the Modular Multilevel Converter (MMC) cells of a power converter. The integrated DC chopper may include chopper resistors that may also be advantageously integrated into a heat sink for a power module comprising at least the power transistors of the MMC cell. Embodiments herein also describe a method for using an MMC cell's IGBTs and chopper resistors for providing a safe discharge of both cell capacitors and DC-link capacitors in different operating conditions.