Abstract:
A methodology and system is disclosed which addresses outstanding needs of refiners to process cheaper crudes or blends of crudes. This method and system comprises a number of steps, including characterizing the impact of various constituents in the crude which result in fouling of heat exchangers; estimating model parameters; monitoring and predicting qualitative and quantitative performance; and determining optimal dosage of chemical treatments.
Abstract:
The present invention is directed to a method for producing an emulsified aqueous hydrocarbon solution comprising, providing a liquid hydrocarbon stream at a particular temperature and a separate water stream, mixing the water stream with a surfactant at a predetermined ratio, raising the pressure of the hydrocarbon stream to a pressure greater than the vapor pressure of steam at the temperature, spraying the water into the hydrocarbon stream at a pressure greater than that of the hydrocarbon stream in a pre-mix chamber; and passing the pressurized hydrocarbon-water mixture through a static mixing chamber.
Abstract:
A methodology and system is disclosed which addresses outstanding needs of refiners to process cheaper crudes or blends of crudes. This method and system comprises a number of steps, including characterizing the impact of various constituents in the crude which result in fouling of heat exchangers; estimating model parameters; monitoring and predicting qualitative and quantitative performance; and determining optimal dosage of chemical treatments.
Abstract:
The present invention provides a feedstock composition for increasing the efficiency of atomization in hydrocarbon processing that includes a water-in-hydrocarbon oil emulsion including a non-ionic surfactant capable of stabilizing the emulsion and having a hydrophilic-lipophilic balance of greater than about 12. The emulsion includes water droplets of about 5 to about 10 microns in diameter, the droplets being dispersed substantially uniformly in the hydrocarbon oil phase. These surfactants are capable of stabilizing the water-in-hydrocarbon oil emulsion under relevant temperature and pressure conditions for hydrocarbon processing. The inventive feedstock composition provides a metastable water-in-oil emulsion where expanding water vapor explodes under spray conditions where the system pressure is released, demolishing a larger oil droplet and producing smaller oil droplets.
Abstract:
The present invention relates to additives for enhancing the lubricity of hydrocarbon fuel oils, the inventive additive composition including one or more of the reaction products of (i) an alkylated polyamine and (ii) urea or isocyanate, or the salt adducts of these reaction products. More particularly, the present invention provides for a process for improving the lubricity of hydrocarbon fuel oils, which are low in inherent lubricity due to treatment to reduce sulfur and aromatic components for improved emissions.