Abstract:
A mask assembly includes nasal interface, e.g., in the form of a pair of nozzles, at least one joining portion provided to each side of the nasal interface, and a headgear coupled or otherwise provided to or extending from the joining portion, that is looped around the patient's ears. The joining portion is small and compact and may be readily affixed to an existing nasal arrangement, i.e., retrofitted. The joining portion and the headgear can be formed in separate components, or they can be formed as an integral or one-piece arrangement.
Abstract:
A mask assembly includes nasal interface, e.g., in the form of a pair of nozzles, at least one joining portion provided to each side of the nasal interface, and a headgear coupled or otherwise provided to or extending from the joining portion, that is looped around the patient's ears. The joining portion is small and compact and may be readily affixed to an existing nasal arrangement, i.e., retrofitted. The joining portion and the headgear can be formed in separate components, or they can be formed as an integral or one-piece arrangement.
Abstract:
A pressure relief panel assembly for rupture discs, explosion vents and the like has a plurality of frangible panel portions which burst at different pressures to present a pressure relieving aperture having a cross-sectional area which varies in accordance with the number of panel portions which have ruptured. In one embodiment of the invention, the assembly comprises two frangible panels positioned in face-to-face relationship in covering disposition to a vent opening, and the innermost panel has an orifice which functions as a pressure relieving aperture once the outermost panel ruptures; subsequently, further build up of pressure causes the innermost panel to burst and present a pressure relieving aperture larger than the orifice so that the structure to be protected is fully vented. In certain forms of the invention, a discontinuous pattern of perforated lines of weakness in the innermost panel serve as pressure relieving apertures once the outermost panel ruptures. In another embodiment, the assembly comprises a single panel having one set of weakness lines defining a first frangible panel portion and a second set of weakness lines surrounding the first set and defining a second frangible panel portion.
Abstract:
Micro-scale chemical process simulation apparatus is disclosed which is useful for design of full-scale processes and associated equipment as well as emergency relief systems. A thin-walled vessel for receiving a quantity of the material to be evaluated is supportd within and thermally insulated from the walls of a surrounding containment unit. A guard heater is provided around the vessel and temperature thermocouples and pressure transducers are strategically located to monitor the temperature conditions existing in the material in the vessel as well as the pressure within the vessel and the containment unit respectively. Fluid may be selectively introduced into or exhausted from the containment unit to maintain a required pressure balance between the interior of the vessel and that of the containment unit. The wall thickness of the pilot vessel is such that the phi factor defined by the thermal mass of the material plus the thermal mass of the vessel divided by the thermal mass of the material is not significantly greater than the same ratio of thermal masses which obtain during a full-scale chemical operation in a pressure vessel.
Abstract:
A suppressant delivery and release nozzle structure is disclosed for an explosion protection system. The nozzle is a reducing elbow, concentric or eccentric mounting a rupture disc at its small end. A selectively actuatable detonator housed in the nozzle adjacent the disc permits substantially instantaneous opening of the disc upon command for release and delivery of suppressant to a zone to be protected from an explosion hazard. The configuration of the nozzle assures unimpeded discharge of suppressant from the system in a minimum of time without significant two-phase flow. The nozzle is equally adaptable for liquid or powdered suppressant compositions.
Abstract:
An air delivery conduit (620) includes first (621) and second (622) conduit portions that cooperate to form the conduit, each conduit portion including an inner layer of a film laminate (650) that forms an interior surface of the conduit and an outer layer of a textile (655) that forms an exterior surface of the conduit.
Abstract:
An air delivery conduit (620) includes first (621) and second (622) conduit portions that cooperate to form the conduit, each conduit portion including an inner layer of a film laminate (650) that forms an interior surface of the conduit and an outer layer of a textile (655) that forms an exterior surface of the conduit.