Abstract:
The present disclosure relates to a method for the quantitative determination of surface properties, wherein a spatially resolved image of a surface to be analysed, which contains a large number of measured values, is recorded. In a first method step, the measured values are analysed in order to determine those surface areas which have a specific physical property. A result value of this physical property is then determined, wherein this result value is characteristic of the values of the physical property of all those surface areas of the image determined by analyzing the image. According to the disclosure, the result value is displayed against the size of the determined surface areas.
Abstract:
The invention relates to an apparatus for determining optical surface properties of workpieces, comprising a housing, in the interior of which there is provided a carrier on which the workpiece be arranged, and comprising a radiation device which directs radiation onto the workpiece in a predefined emission direction (E). According to the invention, the housing has in at least one wall an observation opening, through which a region of the workpiece illuminated by the radiation device can be observed in a predefined observation direction (B).
Abstract:
A method and a device for a spatially resolved examination and evaluation of the properties of surfaces, in particular such properties of surfaces which affect the optical impression which the surface makes. A defined radiation is directed at a first predetermined solid angle to an examined surface. Furthermore, at least a portion of the radiation affected by the examined surface in particular by diffusion and reflection, is detected at a second predefined solid angle. At least one measured variable is spatially resolved captured which characterizes at least one predetermined property of the radiation affected by the examined surface. At least over a portion of the spatially resolved measured values at least one statistical parameter for characterizing the surface is determined.
Abstract:
An apparatus for determining surface properties, comprises at least a first radiation device which emits radiation onto a surface to be analyzed, at least a first radiation detector device which receives at least part of the radiation emitted by the at least one radiation device and then scattered or reflected by the surface and outputs at least a first measurement signal which is characteristic of the reflected or scattered radiation, and at least a further radiation detector device which receives at least part of the radiation emitted by the at least one radiation device and then scattered or reflected by a surface and outputs at least a second measurement signal which is characteristic of the reflected or scattered radiation.
Abstract:
A method for characterizing surfaces wherein a first and a second quantity characteristic of roughness of the surface are determined, a first derived quantity is determined by applying mathematical operations to at least said first characteristic quantity and a second derived quantity is determined by applying mathematical operations to at least said second characteristic quantity; wherein an interrelationship between the first and the second derived quantity will be formed which at least partially specifies at least the optical properties of the surface. Finally, the first and the second derived quantities are represented in a common reference frame.
Abstract:
A device for the quantified evaluation of surface characteristics including a first radiation structure which is arranged in a first predetermined angle with respect to a surface to be analyzed and which directs radiation onto the surface to be analyzed, wherein the radiation directed onto the surface has at least one component with wavelengths in the infrared area, a detection apparatus arranged in a second predetermined angle with respect to the surface to be analyzed detecting the radiation radiated onto the surface and being thrown back from it.
Abstract:
The invention relates to a method for the quantitative determination of surface properties, wherein a spatially resolved image of a surface to be analysed, which contains a large number of measured values, is recorded. In a first method step, the measured values are analysed in order to determine those surface areas which have a specific physical property. A result value of this physical property is then determined, wherein this result value is characteristic of the values of the physical property of all those surface areas of the image determined by analysing the image. According to the invention, the result value is displayed against the size of the determined surface areas.
Abstract:
The invention relates to a method for the quantitative determination of surface properties, wherein a spatially resolved image of a surface to be analysed, which contains a large number of measured values, is recorded. In a first method step, the measured values are analysed in order to determine those surface areas which have a specific physical property. A result value of this physical property is then determined, wherein this result value is characteristic of the values of the physical property of all those surface areas of the image determined by analysing the image. According to the invention, in addition to the result value, a further value (B) characteristic of the surface is determined and this characteristic value is displayed together with the result value (I).
Abstract:
A method for determining the properties of surfaces wherein a first process step specified radiation emits from at least one radiation source to a measuring surface, in further process steps the radiation reflected and/or scattered off the measuring surface is detected by a plurality of image-capturing components, and a signal is generated which specifies at least one parameter of the radiation detected by the image-capturing components. In further process steps the first signals are grouped based on predetermined criteria to form group signals, and at least one group-specific evaluation figure is computed, and a dependent statistical parameter correlating with at least one measuring surface remission characteristic. Finally at least one statistical parameter is read out in dependence on the predetermined criterion for grouping said first signals. The properties of the surface are specified by a relation between at least two statistical parameters.
Abstract:
A device for examining the optical properties of surfaces includes a first radiation source which emits radiation to an examination surface, at least one first detector device, for detecting the radiation reflected off the surface and emitting at least one signal that is characteristic of at least one parameter of the detected radiation, wherein the detector device includes a plurality of image capturing components arranged in a specified detection area and wherein a control is provided for compensating signal changes caused by a shift of the location where the reflected radiation is incident on the detection area.