Abstract:
In one aspect, an HMD is disclosed that provides a technique for generating a composite image representing the view of a wearer of the HMD. The HMD may include a display and a front-facing camera, and may be configured to perform certain functions. For instance, the HMD may be configured to make a determination that a trigger event occurred and responsively both generate a first image that is indicative of content displayed on the display, and cause the camera to capture a second image that is indicative of a real-world field-of-view associated with the HMD. Further, the HMD may be configured to generate a composite image that combines the generated first image and the captured second image.
Abstract:
Methods, apparatus, and computer-readable media are described herein related to a user interface (UI) for a head-mountable device (HMD). A computing device, such as an HMD, can display at least a portion of a first linear arrangement of cards. The first linear arrangement can include an ordered plurality of cards that can include an actionable card and a bundle card that can correspond to a group of cards. A moveable selection region can be displayed. A given card can be selected by aligning the selection region with the given card. After selection of a bundle card, the computing device can display a second linear arrangement of cards that includes a portion of the corresponding group of cards. After selection of an actionable card, the computing device can display a third linear arrangement of cards that includes action card(s) selectable to perform action(s) based on the actionable card.
Abstract:
In one aspect, an HMD is disclosed that provides a technique for generating a composite image representing the view of a wearer of the HMD. The HMD may include a display and a front-facing camera, and may be configured to perform certain functions. For instance, the HMD may be configured to make a determination that a trigger event occurred and responsively both generate a first image that is indicative of content displayed on the display, and cause the camera to capture a second image that is indicative of a real-world field-of-view associated with the HMD. Further, the HMD may be configured to generate a composite image that combines the generated first image and the captured second image.
Abstract:
Methods and systems for hands-free browsing in a wearable computing device are provided. A wearable computing device may provide for display a view of a first card of a plurality of cards which include respective virtual displays of content. The wearable computing device may determine a first rotation of the wearable computing device about a first axis and one or more eye gestures. Based on a combination of the first rotation and the eye gestures, the wearable computing device may provide for display the navigable menu, which may include an alternate view of the first card and at least a portion of one or more cards. Then, based on a determined second rotation of the wearable computing device about a second axis and based on a direction of the second rotation, the wearable computing device may generate a display indicative of navigation through the navigable menu.
Abstract:
Exemplary embodiments involve real-time commenting in experience-sharing sessions. An exemplary method involves: (a) a server system facilitating an experience sharing session between a sharing device and one or more viewing devices, wherein the server system receives media in real-time from the sharing device and transmits the media to the one or more viewing devices in real-time, wherein the media comprises video; (b) during the experience sharing session, the server system receiving one or more comments from one or more of the viewing devices; (d) the server system filtering the received comments in real-time based on filter criteria; and (e) the server system initiating real-time delivery, to the sharing device, of one or more of the received comments that satisfy the filter criteria.
Abstract:
Embodiments may be implemented by a computing device, such as a head-mountable display or mobile phone, in order to pre-emptively warm up the device's camera, when it is probable that a user will be taking a photo. An illustrative method involves a computing device (a) receiving sensor data from one or more sensors associated with the computing device, wherein the computing device comprises an image-capture device, (b) analyzing the sensor data to detect at least one pre-image-capture signal, wherein the at least one pre-image-capture signal indicates a subsequent image-capture signal is likely to be received, and (c) in response to detecting the at least one pre-image-capture signal, causing the computing device to initiate an image-capture preparation process that prepares the image-capture device to capture an image.
Abstract:
Systems and methods for determining whether a point-of-interest (POI) corresponds to a tourist location are provided. A method includes receiving a set of assessments for the POI. Each assessment in the set of assessments includes an associated user account. Each assessment in the set of assessments includes a web-based assessment or an in-person assessment of the POI by the associated user account. The method also includes, for plural assessments in the set of assessments, determining whether the associated user account is a tourist user account or a local user account. The method also includes determining a touristiness value for the POI based on a number of in-person assessments including an associated tourist user account, a number of in-person assessments including an associated local user account, a number of web-based assessments including an associated tourist user account, or a number of web-based assessments including an associated local user account.
Abstract:
Methods, apparatus, and computer-readable media are described herein related to displaying and cropping viewable objects. A viewable object can be displayed on a display of a head-mountable device (HMD) configured with a hand-movement input device. The HMD can receive both head-movement data corresponding to head movements and hand-movement data from the hand-movement input device. The viewable object can be panned on the display based on the head-movement data. The viewable object can be zoomed on the display based on the hand-movement data. The HMD can receive an indication that navigation of the viewable object is complete. The HMD can determine whether a cropping mode is activated. After determining that the cropping mode is activated, the HMD can generate a cropped image of the viewable object on the display when navigation is complete.
Abstract:
Methods and systems for hands-free browsing in a wearable computing device are provided. A wearable computing device may provide for display a view of a first card of a plurality of cards which include respective virtual displays of content. The wearable computing device may determine a first rotation of the wearable computing device about a first axis and one or more eye gestures. Based on a combination of the first rotation and the eye gestures, the wearable computing device may provide for display the navigable menu, which may include an alternate view of the first card and at least a portion of one or more cards. Then, based on a determined second rotation of the wearable computing device about a second axis and based on a direction of the second rotation, the wearable computing device may generate a display indicative of navigation through the navigable menu.
Abstract:
Methods, apparatus, and computer-readable media are described herein related to displaying and cropping viewable objects. A viewable object can be displayed on a display of a head-mountable device (HMD) configured with a hand-movement input device. The HMD can receive both head-movement data corresponding to head movements and hand-movement data from the hand-movement input device. The viewable object can be panned on the display based on the head-movement data. The viewable object can be zoomed on the display based on the hand-movement data. The HMD can receive an indication that navigation of the viewable object is complete. The HMD can determine whether a cropping mode is activated. After determining that the cropping mode is activated, the HMD can generate a cropped image of the viewable object on the display when navigation is complete.