Abstract:
An approach to enhance the noise immunity of high-speed digital signals by means of a resonance-free environment is developed. Resonance detuning is achieved by appropriately reshaping the layout of the power/ground planes. Resonant properties of the power distribution system, including resonant frequencies and field distribution profiles, were characterized with frequency-domain simulations. Analysis of the resonant field profiles reveals that the electric field distribution of the dominant mode normally concentrates in the vicinity of the plane edge. Therefore, resonance can be effectively tuned out of the operating frequency range through boundary configuring. In addition, it is shown that variation of the quality factor with the external probe position provides a means to monitor and construct the resonant field distribution. Physical mechanism responsible for this unique property is clarified from the perspective of probe coupling. A Y-shaped layout is reshaped to effectively realize a resonance-free operating environment.