Abstract:
The present disclosure proposes a colorimetric method that couples sensor design with image processing to enable automated evaluation of test results obtained by paper-based sensors. The proposed method can match ink color and dye used in colorimetric reaction in terms of their absorption in spectral range (e.g., red, green, blue). A near-zero absorption channel can then be used to normalize absorption channels and construct a composite image.
Abstract:
The present disclosure proposes a design of a biomedical paper sensor which can determine the concentration of biological materials in fluids such as blood, urine, and saliva. The sensor contains a plurality of axially radiating test zones, each test zone separated from other test zones by wax ink barriers formed by a process that produces thin walls. Each test zone can contain a unique test reagent, or a unique concentration of a test reagent, and can also be identified by printed text. The region of the device outside of the test zone area is printed with a uniform reference color. Benefits of the invention include increased accuracy in the measurement of the concentration of biological materials due to the larger test zone area. Benefits also include the integration of the reference or calibration color which simplifies the calibration needed for quantification of the concentration.
Abstract:
The present disclosure proposes a design of a biomedical paper sensor which can determine the concentration of biological materials in fluids such as blood, urine, and saliva. The sensor contains a plurality of axially radiating test zones, each test zone separated from other test zones by wax ink barriers formed by a process that produces thin walls. Each test zone can contain a unique test reagent, or a unique concentration of a test reagent, and can also be identified by printed text. The region of the device outside of the test zone area is printed with a uniform reference color. Benefits of the invention include increased accuracy in the measurement of the concentration of biological materials due to the larger test zone area. Benefits also include the integration of the reference or calibration color which simplifies the calibration needed for quantification of the concentration.
Abstract:
The present disclosure proposes a colorimetric method that couples sensor design with image processing to enable automated evaluation of test results obtained by paper-based sensors. The proposed method can match ink color and dye used in colorimetric reaction in terms of their absorption in spectral range (e.g., red, green, blue). A near-zero absorption channel can then be used to normalize absorption channels and construct a composite image.