Abstract:
A method for manufacturing a metal nitride layer including the following steps is provided. Firstly, a substrate is provided. Then, a physical vapor deposition process is performed at a temperature between 210° C. and 390° C. to form a metal nitride layer on the substrate. Also, the physical vapor deposition process can be performed on a pressure between 21 mTorr and 91 mTorr. The method can be used in the manufacturing process of an interconnection structure for decreasing the film stress of the metal nitride layer. Therefore, the interconnection structure can be prevented from line distortion and film collapse.
Abstract:
A fin field-effect transistor structure includes a substrate, a fin channel and a high-k metal gate. The high-k metal gate is formed on the substrate and the fin channel. A process of manufacturing the fin field-effect transistor structure includes the following steps. Firstly, a polysilicon pseudo gate structure is formed on the substrate and a surface of the fin channel. By using the polysilicon pseudo gate structure as a mask, a source/drain region is formed in the fin channel. After the polysilicon pseudo gate structure is removed, a high-k dielectric layer and a metal gate layer are successively formed. Afterwards, a planarization process is performed on the substrate having the metal gate layer until the first dielectric layer is exposed, so that a high-k metal gate is produced.
Abstract:
Gate structures of CMOS device and the method for manufacturing the same are provided. A substrate having an NMOS region, a PMOS region, and a work function modulation layer disposed on the NMOS region and the PMOS region is provided. A nitrogen doping process is performed to dope nitrogen into a portion of the work function modulation layer disposed on the PMOS region so as to form an N-rich work function modulation layer disposed on the PMOS region. A nonmetallic conductive layer is formed blanketly covering the work function modulation layer and the N-rich work function modulation layer. A portion of the nonmetallic conductive layer, the work function modulation layer, and the N-rich work function modulation layer is removed to form a first gate in the NMOS region and a second gate in the PMOS region.
Abstract:
Gate structures of CMOS device and the method for manufacturing the same are provided. A substrate having an NMOS region, a PMOS region, and a work function modulation layer disposed on the NMOS region and the PMOS region is provided. A nitrogen doping process is performed to dope nitrogen into a portion of the work function modulation layer disposed on the PMOS region so as to form an N-rich work function modulation layer disposed on the PMOS region. A nonmetallic conductive layer is formed blanketly covering the work function modulation layer and the N-rich work function modulation layer. A portion of the nonmetallic conductive layer, the work function modulation layer, and the N-rich work function modulation layer is removed to form a first gate in the NMOS region and a second gate in the PMOS region.
Abstract:
A heater for heating a wafer is applied in a process chamber. The heater has an upper surface for positioning a wafer to heat the wafer, wherein a connection area of the upper surface and the wafer is less than the area of the wafer when the wafer is positioned on the upper surface of the heater.
Abstract:
A semiconductor manufacturing equipment comprising a canopy, a semiconductor processing device, a load port, a robot arm or a transferring device, an air vent, and a chemical filter to remove chemical substance in the air. A HEPA or ULPA filter may be included to filter off particulates. The load port may have a standardized mechanical interface (SMIF) suitable for SMIF pods. In the case that the semiconductor processing device is a copper processing tool, an advantage of preventing copper from corrosion is attained in the present invention by removing chemical substance.