Abstract:
A bandstop filter having optimum component values is provided for a lead of an active implantable medical device (AIMD). The bandstop filter includes a capacitor in parallel with an inductor. The parallel capacitor and inductor are placed in series with the implantable lead of the AIMD, wherein values of capacitance and inductance are selected such that the bandstop filter is resonant at a selected frequency. The Q of the inductor may be relatively maximized and the Q of the capacitor may be relatively minimized to reduce the overall Q of the bandstop filter to attenuate current flow through the implantable lead along a range of selected frequencies.
Abstract:
In various examples, a neurostimulation interconnection apparatus apparatus includes a substrate disposed within a header of a neurostimulation device. A spring contact is mounted to the substrate. The spring contact is oriented to accept and apply a clamping force to a proximal contact of a lead body to electrically couple the proximal contact of the lead body with the spring contact with insertion of the proximal contact within the spring contact. A trace is disposed on the substrate from the spring contact to a pin of a feedthrough of the neurostimulation device. The trace electrically couples the spring contact with the pin of the feedthrough.
Abstract:
A low-insertion force electrical connector for implantable medical devices includes a housing with a pair of opposing sidewalls each with center openings oriented generally concentrically around a center axis. An inner coil is located in a recess with a coil axis generally co-linear with the center axis of the center openings. The inner coil includes an outer diameter less than a recess diameter, and an inner diameter greater than a center opening diameter. An outer coil is threaded onto the inner coil. The outer coil has an outer diameter less than the recess diameter, and an inner diameter less than the center opening diameter. The outer coil is radially expanded within the recess in response to engagement with contact rings on the implantable medical device, such that the outer diameter of the outer coil is at least equal to the recess diameter.
Abstract:
A method of identifying a location for applying a stimulation therapy to treat a patient includes stimulating a first body region of the patient transcutaneously via a stimulus generator. The body region contains a first portion of a nerve that has an elongate shape. In response to the stimulating, action potentials received from a second portion of the nerve are monitored over a period of time. The second portion of the nerve is in a second body region of the patient that is located remotely from the first body region. Based on the monitoring, an optimized location of the second portion of the nerve is determined for applying the stimulation therapy to treat the first body region.
Abstract:
A method of visualizing a sensation experienced by a patient is disclosed. A graphical user interface is provided. The graphical user interface is configured to receive an input from a user and display a visual output to the user. A virtual control mechanism is displayed on the graphical user interface. One or more engagements of the virtual control mechanism are detected through the graphical user interface. In response to the engagement of the virtual control mechanism, a sensation map history is displayed on the graphical user interface. The sensation map history graphically depicts a migration of a sensation map over time on a virtual human body model.
Abstract:
The prevention of lithium clusters from bridging between the negative and positive portions of a cell during discharge is described. This is done by providing a glass wool material at an intermediate location between the casing and anode current collector of a negative polarity and the cathode current collector and the terminal pin being of a positive polarity. Typically, a lithium ion concentration gradient sufficient to cause lithium cluster formation is induced by the high rate, intermittent discharge of a lithium/silver vanadium oxide (Li/SVO) cell. However, sufficient free electrolyte necessary for normal cell function is held in the relatively large pore volume throughout the extent of the glass wool material. Moreover, permeability within the glass wool material is tortuous, which effectively increases the distance between the negative and positive surfaces of the anode and cathode. This tortuosity effectively stops “straight line” dendrite growth of lithium clusters between opposite polarity structures inside the casing.
Abstract:
An MRI-compatible electronic medical therapy system includes an active medical device connected to a plurality of electrodes. An independently actuatable switch selectively electrically connects at least one circuit protection device in electrical series with the electrodes and the medical device. The circuit protection device is adapted to permit current flow therethrough during normal medical device related therapy, but substantially prevent current flow therethrough in the presence of an induced electromagnetic field.
Abstract:
A medical device for placing a medical lead in the human body using minimally invasive techniques is described. One lead includes a lead body connected to a lead head having an aperture for providing fiber optic access to the interior of a helical electrode. The fiber optic shaft may be disposed within or along-side a drive shaft releasably coupled to the lead head to rotate the head. The drive shaft and lead body may be delivered using a delivery catheter. The delivery catheter can be advanced though a small incision to the target tissue site, and the site remotely visualized through the fiber optic scope extending through the lead head aperture. The lead head can be rotated, rotating the helical electrode into the tissue, and the catheter, drive shaft, and fiber optic probe removed.
Abstract:
A shielded three-terminal flat-through EMI/energy dissipating filter includes an active electrode plate through which a circuit current passes between a first terminal and a second terminal, a first shield plate on a first side of the active electrode plate, and a second shield plate on a second side of the active electrode plate opposite the first shield plate. The first and second shield plates are conductively coupled to a grounded third terminal. In preferred embodiments, the active electrode plate and the shield plates are at least partially disposed with a hybrid flat-through substrate that may include a flex cable section, a rigid cable section, or both.
Abstract:
An orthopedic cutting tool for reshaping the end of a femur is described. The cutting tool comprises three separate cutting blades that are positioned within different locations within a housing to reshape the end of the femur to thus receive a femur head prosthetic. The cutting tool forms the reshaped femur end in one cutting motion.