Abstract:
An optical wiring module includes an optical wiring substrate on which an optical waveguide having a light input/output part is formed, and a fiber holder mounted on the optical wiring substrate, the fiber holder being configured to hold an optical fiber. The optical wiring substrate includes a hydrophobic film having an opening at a position corresponding to the light input/output part and a first adhesive layer disposed within the opening, and the optical fiber is optically coupled to the light input/output part via the first adhesive layer.
Abstract:
An optical device includes an optical waveguide provided on a principal surface of a substrate. The optical waveguide includes a core and a cladding provided around the core. The cladding is configured by a substance having a refractive index smaller than 71.4% of the refractive index of the core. The core has constituent atoms substantially forming a diamond lattice structure. The optical waveguide has a light input/output part through which a light beam is input and/or output. The light input/output part decreases stepwise in thickness towards an output end while tapering down in its width. The core is provided in the light input/output part to have a (111) plane or an equivalent plane to the (111) plane exposed on a face of a riser of the stepwise thickness of the light input/output part.
Abstract:
There is provided an optical multiplexing and de-multiplexing element which is provided with a slab waveguide and a waveguide structure and can reduce radiation loss caused in a connection part between the slab waveguide and the waveguide structure. The waveguide structure includes a multimode interference (MMI) waveguide coupler and a narrow-width waveguide, the MMI waveguide coupler and the narrow-width waveguide are connected to each other in this order from a connection position with the slab waveguide along the waveguide direction, step portions are formed on both sides of the MMI waveguide coupler along the waveguide direction, and the thickness of the step portion is smaller than the thickness of the MMI waveguide coupler.
Abstract:
An optical modulation device includes: an optical waveguide formed above a substrate; a phase modulator disposed on part of the optical waveguide; a capacitor connected to the phase modulator and including a lower electrode and an upper electrode; a resistor connected in parallel to the capacitor; and an appended part integrated with the upper electrode and electrically connected to the resistor, wherein the appended part is smaller in area than the capacitor (upper electrode).
Abstract:
The invention relates to a wavelength division multiplexing optical receiver that is provided with a polarization splitting grating coupler and a driving method for the same, where the power consumption is reduced, and at the same time, a degradation in the receiver sensitivity is suppressed. Two monitor photodetectors configured to monitor the light intensity of a first polarization component and a second polarization component separated by a polarization splitting optical coupler are provided, and a control circuit is provided in order to allow a semiconductor optical amplifier that amplifies the first polarization component and another semiconductor optical amplifier that amplifies the second polarization component in accordance with the signal intensity ratio of the two monitor photodetectors to amplify light with different light gains.
Abstract:
A semiconductor integrated circuit that reduces a loss in an electrical signal and a method for manufacturing the semiconductor integrated circuit are provided. The semiconductor integrated circuit comprises a first region on which an optical circuit is to be formed and a second region on which an electrical signal wiring is to be formed. The first region comprises an Si substrate (502), a BOX layer (504) formed on the Si substrate (502), a first SOI layer (506) formed as an optical circuit on the BOX layer (504), and a first SiO2 layer (508) formed on the first SOI layer (506). The second region comprises the Si substrate (502), the BOX layer (504), a second SiO2 layer (508) formed on the BOX layer (504), and an electrical signal wiring (510) formed on the second SiO2 layer (508).
Abstract:
A semiconductor light receiving device includes a substrate, a semiconductor fine line waveguide provided on the substrate, and a light receiving circuit that is provided on the substrate and that absorbs light propagating through the semiconductor fine line waveguide. The light receiving circuit includes a p type first semiconductor layer, a number of second semiconductor mesa structures provided on the p type first semiconductor layer in such a manner that an n type second semiconductor layer is provided on top of an i type second semiconductor layer, a p side electrode connected to the p type first semiconductor layer in a location between the second semiconductor mesa structures, and an n side electrode connected to the n type second semiconductor layer. The refractive index and the optical absorption coefficient of the second semiconductor layers are greater than the refractive index and the optical absorption coefficient of the first semiconductor layer.
Abstract:
A semiconductor light receiving device includes a substrate, a semiconductor fine line waveguide provided on the substrate, and a light receiving circuit that is provided on the substrate and that absorbs light propagating through the semiconductor fine line waveguide. The light receiving circuit includes a p type first semiconductor layer, a number of second semiconductor mesa structures provided on the p type first semiconductor layer in such a manner that an n type second semiconductor layer is provided on top of an i type second semiconductor layer, a p side electrode connected to the p type first semiconductor layer in a location between the second semiconductor mesa structures, and an n side electrode connected to the n type second semiconductor layer. The refractive index and the optical absorption coefficient of the second semiconductor layers are greater than the refractive index and the optical absorption coefficient of the first semiconductor layer.
Abstract:
According to one embodiment, a semiconductor light-receiving element, includes a light-receiving part provided on a substrate and having a semiconductor multilayer structure of a circular outer shape, a optical input part formed of a peripheral portion of the semiconductor multilayer structure, and having a tapered front end, and a silicon-thin-line waveguide configured to couple light with the optical input part. The waveguide includes a linear part extending through the optical input part to an at least one area of an upper-side area and a lower-side area of the light-receiving part, and a spiral part connected to the linear part and formed in the at least one area.
Abstract:
Provided is a waveguide-type optical diffraction grating. A waveguide core includes a waveguide core that is asymmetric with respect to a thickness direction perpendicular to a light propagating direction. In the waveguide core, a phase adjustment portion is configured to adjust a phase difference between a forward wave traveling in an input direction and a reflected wave traveling in a direction reverse to the input direction in the waveguide-type optical diffraction grating, and the phase adjustment portion is provided in a manner that a sum of a phase of the forward wave and a phase of the reflected wave which are generated in the phase adjustment portion becomes a constant value irrespective of a polarization state of input light to the waveguide-type optical diffraction grating.