Abstract:
A system and method is provided for real-time data transmission using adaptive time compression that is based on an estimation of network load, one or more media properties of the real-time data, and/or a battery level of the mobile device. A first embodiment provides a mobile device operable to transmit real time data using the adaptive time compression. Another embodiment provides a wireless network operable to transmit real-time data using the adaptive time compression. Another embodiment provides a wireless network operable to determine a time compression ratio, which is used for the adaptive time compression The time compression ratio might be sent to the mobile device for use by the mobile device in up (reverse) link transmission, or by the mobile device in down (forward) link reception, or both. Another embodiment provides a mobile device operable to enter a low power consumption mode while not actively transmitting or receiving.
Abstract:
In accordance with the teachings described herein, systems and methods are provided for battery capacity estimation. A profile table may be used that relates a plurality of battery profile values with a plurality of operating parameter values. The profile table may be accessed to translate one or more measured operating parameters into one or more corresponding battery profile values. One or more of the battery profile values may be adjusted by a correction factor to generate a corrected battery profile value. The available capacity of the battery may be calculated using the corrected battery profile value. The correction factor may then be automatically calibrated by using an estimated battery profile value calculated from the one or more measured operating parameter.
Abstract:
In accordance with the teachings described herein, systems and methods are provided for battery capacity estimation. A profile table may be used that relates a plurality of battery profile values with a plurality of operating parameter values. The profile table may be accessed to translate one or more measured operating parameters into one or more corresponding battery profile values. One or more of the battery profile values may be adjusted by a correction factor to generate a corrected battery profile value. The available capacity of the battery may be calculated using the corrected battery profile value. The correction factor may then be automatically calibrated by using an estimated battery profile value calculated from the one or more measured operating parameter.
Abstract:
A method and system of reachability indication between a wireless device and at least one push server, the method comprising the steps of: sending device status information from the wireless device to the at least one push server; and receiving the status information at the at least one push server; wherein the at least one push server is enabled to selectively start and stop serving the wireless device on the basis of the status information. The method further comprises sending status information to a packet data serving node that stores a list of push servers associated with a wireless device, and having the packet data serving node forward the status information to the push server. The system and method further includes selectively starting and stopping the serving of the wireless device by the push server during a voice call.
Abstract:
Methods and apparatus for limiting communication capabilities in mobile communication devices are disclosed. In one illustrative example, an operating variable of a mobile communication device is detected to be within one of a first range of values, a second range of values, and a third range of values. The mobile device operates in a full communication state if the operating variable is detected to be within the first range of values, a first limited communication state if the operating variable is detected to be within the second range of values, or a second limited communication state if the operating variable is detected to be within the third range of values. When receiving a communication request for establishment of a voice call or for communication of a user data message, the mobile device permits or prohibits the communication depending on the communication state, and preferably depending on whether the communication request is for a non-emergency or emergency communication. In one preferred embodiment, the operating variable is a temperature of the mobile device.
Abstract:
A method and system of reachability indication between a wireless device and at least one push server, the method comprising the steps of: sending device status information from the wireless device to the at least one push server; and receiving the status information at the at least one push server; wherein the at least one push server is enabled to selectively start and stop serving the wireless device on the basis of the status information. The method further comprises sending status information to a packet data serving node that stores a list of push servers associated with a wireless device, and having the packet data serving node forward the status information to the push server. The system and method further includes selectively starting and stopping the serving of the wireless device by the push server during a voice call.
Abstract:
Systems and methods are provided for controlling gain compensation over temperature and frequency variations. A variable amplifier may be used to receive a control signal and an input signal. The variable amplifier may be operable to apply a gain to the input signal to generate an output signal, wherein the gain is a function of the control signal. A summation module may be used to combine a gain reference signal and a gain variation signal to generate the control signal. The gain reference signal may be calibrated at a reference temperature and a reference frequency. A gain calibration module may be used to output the gain variation signal as a function of both a current operating temperature and a current operating frequency.
Abstract:
A system and method for obtaining a frequency error estimate representing the difference between a reference frequency and the frequency of a space-time transmit diversity signal is disclosed herein. The method includes taking the correlation of total sums, comprised of partial sums taken in defined first and second intervals, to represent the frequency error as the imaginary component of the correlation function.
Abstract:
Methods and apparatus for expeditiously releasing network resources for a mobile station based on low battery and lost signal conditions are disclosed. The wireless network (104) receives a power down warning message from the mobile station (102) indicative of a low battery condition. The wireless network (104) then identifies whether a lost signal condition exists with the mobile station (102). In response to receiving the power down warning message and subsequently identifying the lost signal condition, the wireless network (104) causes network resources for the mobile station to be released. The wireless network (104) infers that the mobile station (102) has powered down due to low battery without enough time to send a power down registration to the wireless network (104).
Abstract:
A method of system access from a wireless device to a wireless network, the network having a plurality of base stations includes the steps of: selecting at least one reverse link cost metric from a list of predetermined reverse link cost metrics; determining a reverse link cost according to the selected at least one reverse link cost metric; selecting a candidate base station from the plurality of base stations; sending a probe signal at the reverse link cost to the candidate base station; waiting for a response from the candidate base station within a timeout period; and repeating steps until timeout, or until the condition that a response is received from at least one candidate base station so that at least one candidate base station can be used to provide system access from the wireless device to the wireless network.