Abstract:
Optical connectors are provided for connecting sets of optical waveguides (104), such as optical fiber ribbons to each other, to printed circuit boards, or to backplanes. The provided connectors (100) include a housing (110) that has an attachment area (102) for receiving and permanently attaching a plurality of optical waveguides. Additionally, the provided connectors include a light coupling unit (120) disposed in and configured to move with the housing. The provided connectors also include a second attachment area (108) for receiving and permanently attaching to the plurality of optical waveguides that causes each optical waveguide to be bent between the two attachment areas. The provided connectors utilize expanded beam optics with non-contact optical mating resulting in relaxed mechanical precision requirements. The provided connectors can have low optical loss, are easily scalable to high channel count (optical fibers per connector) and can be compatible with low insertion force blind mating.
Abstract:
A plug connector for connecting optical fibers to an electrical receptacle connector includes a housing defining a cavity therein. At least one printed circuit board (PCB) is disposed in the housing cavity. The PCB includes one or more optoelectronic components disposed on its top surface and electrical contacts disposed proximate a mating edge of the PCB for mating with the receptacle connector. The electrical contacts are electrically connected to the one or more optoelectronic components. One or more optical fibers enter the housing cavity through a housing opening and are optically coupled to the optoelectronic components. A structure comprising a top surface is disposed within the housing cavity between the housing opening and the PCB. The plurality of the optical fibers extends over the top surface of the structure and over at least a portion of the top surface of the PCB. The plurality of the optical fibers is separated from the top surface of the PCB by a first minimum distance and from the top surface of the platform by a second minimum distance less than the first minimum distance.
Abstract:
A coupling unit includes a light coupling element comprising an attachment area for receiving and permanently attaching to a plurality of optical waveguides. One or more grooves are provided at the attachment area. Each groove is configured to receive an optical waveguide and defined by a bottom surface, a first region, a second region, and an opening. The first region is defined between the bottom surface and the second region. The first region in cross section has substantially parallel sidewalls separated by a spacing. The second region is disposed between the first region and the opening. A width of the opening is greater than the spacing.
Abstract:
A unitary optical ferrule is molded to include one or more elements for receiving and securing one or more optical waveguides one or more elements for affecting one or more characteristics of light from the optical waveguide while propagating the light within the ferrule. The optical ferrule also includes one or more first alignment features and one or more second alignment features that, when the ferrule is mated with a mating ferrule, each controls alignment of the ferrule with the mating ferrule along three mechanical degrees of freedom. The surface of the optical ferrule can be divided along the thickness axis into a first section and an opposing second section, wherein the first section of the surface includes the receiving and securing elements, the light affecting elements, and the first alignment features and the second section of the surface includes the second alignment features.
Abstract:
An optical cable subassembly includes one or more optical waveguides, at least light coupling unit comprising a first attachment area permanently attached to the optical waveguides, and at least one cable retainer comprising a second attachment area permanently attached to the optical waveguides and adapted to be installed in a housing. A length of the optical waveguides between the first attachment area and the second attachment area allows a bend in the optical waveguides that provides a predetermined mating spring force at a predetermined angle of the light coupling unit when installed in the housing.
Abstract:
A light coupling element including a plurality of waveguide attachment features and a light redirecting member is described. Each attachment feature has an entrance end opposite a terminal end. The entrance ends are arranged at a pitch Pe. The light redirecting member is disposed closer to the terminal ends, and farther from the entrance ends, and includes an input surface, a reflecting side and an exit surface. When a waveguide is attached at each attachment feature, a central light ray emitted by each waveguide enters the light redirecting member through the input surface, is redirected by the reflecting side and exits the light redirecting member at the exit surface, the central light ray intersecting the exit surface at an exit point, each attachment feature corresponding to a different exit point at the exit surface. The exits points are arranged at a pitch Px not equal to Pe.
Abstract:
An optical ferrule includes at least one light affecting element configured to affect one or more characteristics of light from an optical waveguide as the light propagates in the optical ferrule, the light affecting element having an input surface. At least one receiving element receives and secures the optical wave guide to the ferrule so that an output surface of the waveguide is optically coupled to the input surface of the light affecting element. A waveguide stop limits movement of the wave guide toward the input surface of the light affecting element when the optical waveguide is installed in the receiving element. A space between the output surface of the optical waveguide and the input surface of the light affecting element is inaccessible to the optical waveguide when the optical waveguide is installed in the receiving element.
Abstract:
A unitary optical ferrule is molded to include one or more elements for receiving and securing one or more optical waveguides one or more elements for affecting one or more characteristics of light from the optical waveguide while propagating the light within the ferrule. The optical ferrule also includes one or more first alignment features and one or more second alignment features that, when the ferrule is mated with a mating ferrule, each controls alignment of the ferrule with the mating ferrule along three mechanical degrees of freedom. The surface of the optical ferrule can be divided along the thickness axis into a first section and an opposing second section, wherein the first section of the surface includes the receiving and securing elements, the light affecting elements, and the first alignment features and the second section of the surface includes the second alignment features.
Abstract:
Ferrules, alignment frames and connectors having at least one flexing element are provided. A ferrule or an alignment frame may include a body and first and second flexible arms, and a connector may include the ferrule or the alignment frame. A ferrule may have a first flexible arm that has a first fixed end attached to a first side of the body of the ferrule and an opposite first free end, and may have a second flexible arm having a second fixed end attached to a second side of the body, opposite the first side, and an opposite second free end. When the ferrule is mated with a mating ferrule, the first and second flexible arms are flexed away from the respective first and second sides of the body, and the first and second free ends contact the mating ferrule.
Abstract:
Ferrules, alignment frames and connectors having at least one flexing element are provided. A ferrule or an alignment frame may include a body and first and second flexible arms, and a connector may include the ferrule or the alignment frame. A ferrule may have a first flexible arm that has a first fixed end attached to a first side of the body of the ferrule and an opposite first free end, and may have a second flexible arm having a second fixed end attached to a second side of the body, opposite the first side, and an opposite second free end. When the ferrule is mated with a mating ferrule, the first and second flexible arms are flexed away from the respective first and second sides of the body, and the first and second free ends contact the mating ferrule.