Abstract:
An array substrate, a fabrication method thereof, and an organic light-emitting diode display device are provided; the array substrate (10) comprises a base substrate (100), the base substrate (100) including a display region (102) and a peripheral region (101) surrounding the display region (102), the display region (102) including: a plurality of data lines (12) and a plurality of gate lines (11) intersecting with each other, a plurality of pixel regions (21), formed in a matrix and defined by the plurality of data lines (12) and the plurality of gate lines (11) intersecting with each other formed on the base substrate (100), wherein a thin film transistor (32) is formed in each of the plurality of pixel regions (21); and further, the array substrate (10) also comprises at least one solar cell unit (31), which, together with the thin film transistor (32), is located on a same side of the base substrate (100), and is formed in at least one of the plurality of pixel regions (21) and the peripheral region (101).
Abstract:
The disclosure provides an array substrate, a manufacturing method thereof and a display device. The array substrate includes a plurality of conductive lines and an electrostatic protection circuit on a base substrate. At least some of the conductive lines are connected through the electrostatic protection circuit. Two conductive lines connected with the electrostatic protection circuit are respectively a first conductive line and a second conductive line. The electrostatic protection circuit includes a first transistor, a second transistor, and a first capacitor. A first electrode of the first transistor, a first electrode of the second transistor and a gate electrode of the second transistor are connected to the second conductive line, and a second electrode of the first transistor, a second electrode of the second transistor and a gate electrode of the first transistor are connected to the first conductive line.
Abstract:
The present disclosure relates to a driving unit, including a first driving sub-circuit, a second driving sub-circuit, and a driving control circuit. The first driving sub-circuit includes first switching elements, configured to output a first signal to the driving unit in response to a control signal from the driving control circuit. The second driving sub-circuit includes one or more second switching elements, and at least one of the second switching elements is configured to output a second signal to the driving unit in response to the control signal. The driving control circuit is configured to output the control signal at a control signal output terminal. Each of the first switching elements and second switching elements includes a transistor. Control signal input terminals of the first switching elements are coupled to the control signal output terminal through a control signal input line having a ring structure.
Abstract:
A method for manufacturing an array substrate includes: providing a base substrate; forming gate lines and data lines intercrossing each other, the gate lines and the data lines define multiple pixel units. Multiple pixel regions are formed in each pixel unit, a display electrode having a slit is formed in each pixel region. Each data line includes multiple data line segments. In each pixel unit, each of a part of the pixel regions has a display electrode whose slit is parallel to a data line segment adjacent to this pixel region; each of another part of the pixel regions has a display electrode whose slit is non-parallel to a data line segment adjacent to this pixel region. The display electrodes in each of the pixel units are located at a same side of the gate line to which the pixel unit where the display electrodes are located is coupled.
Abstract:
The application provides a display substrate and a display device. The display substrate includes: gate lines, data lines, the gate lines and the data lines being arranged to intersect to define sub-pixels, every multiple sub-pixels in a same row constituting a pixel unit; and common electrode lines, each of the common electrode lines is between adjacent two of the gate lines. The display substrate further includes common voltage input line groups intersecting with the common electrode lines. Common voltage input lines in different groups are electrically connected to different ones of the common electrode lines, respectively; and an orthographic projection of every N columns of pixel units on a substrate covers an orthographic projection of a corresponding one of the common voltage input line groups on the substrate, where N is an integer greater than or equal to 1.
Abstract:
A display substrate includes a base substrate and an encapsulation film disposed at a first side of the base substrate. At least one corner of an edge of the encapsulation film is a rounded corner or a substantially rounded corner.
Abstract:
There are provided an electrostatic protection circuit, an array substrate, and a display apparatus. The electrostatic protection circuit includes: at least one first transistor and at least one second transistor. Each of the first transistors has a gate and a second electrode both connected to an electrostatic protection line, and a first electrode connected to a signal line; and each of the second transistors has a gate and a second electrode both connected to the signal line, and a first electrode connected to the electrostatic protection line. One resistor is connected in series between a gate and a second electrode of at least one transistor in the electrostatic protection circuit.
Abstract:
An ESD protection circuit including a TFT arranged between a to-be-protected signal line and a discharging line is provided, wherein a length direction of a channel of the TFT is parallel to an extension direction of the to-be-protected signal line. A display panel and a display device are also provided.
Abstract:
The present disclosure relates to a driving unit. The driving unit may include a first driving sub-circuit, a second driving sub-circuit, and a driving control circuit. The first driving sub-circuit may include a plurality of first switching elements, and at least some of the plurality of first switching elements may be configured to output a first signal to a first output terminal of the driving unit in response to a control signal from the driving control circuit. The second driving sub-circuit may include one or more second switching elements, and at least one of the one or more second switching elements may be configured to output a second signal to a second output terminal of the driving unit in response to the control signal from the driving control circuit. The driving control circuit may be configured to output the control signal at a control signal output terminal.
Abstract:
The present disclosure provides an array substrate and a method for manufacturing the same, and a display device. The array substrate includes a plurality of pixel units arranged in a matrix, each the pixel unit includes a plurality of pixel regions, each pixel region is provided with a display electrode having a slit; a plurality of data lines, each of the data lines includes a plurality of data line segments, any two adjacent data line segments are electrically coupled to each other; in each of the pixel units, each of a part of the pixel regions has a display electrode whose slit is parallel to a data line segment adjacent to this display electrode in the data lines; each of another part of the pixel regions has a display electrode whose slit is non-parallel to a data line segment adjacent to this display electrode in the data lines.