Abstract:
This disclosure describes a method for crimping a polymeric stent onto a catheter for percutaneous transluminal coronary angioplasty or other intraluminal interventions. The method comprises crimping the stent onto a catheter when the polymer is at a target temperature other than ambient temperature. The polymer can optionally comprise drug(s).
Abstract:
Methods of sterilizing medical devices, including implantable medical devices like stents, chemically and with radiation are disclosed. Methods of preparing a sterile, packaged medical device, including a sterile, packaged implantable medical device or stent are disclosed.
Abstract:
Methods and systems for manufacturing an implantable medical device, such as a stent, from a tube with desirable mechanical properties, such as improved circumferential strength and rigidity, are described herein. Improved circumferential strength and rigidity may be obtained by inducing molecular orientation in materials for use in manufacturing an implantable medical device. Some embodiments may include inducing molecular orientation by expansion of a molten annular polymer film. Other embodiments may include inducing circumferential molecular orientation by inducing circumferential flow in a molten polymer. In certain embodiments, circumferential orientation may be induced by expansion of a polymer tube. Further embodiments may include manufacturing an implantable medical device from a biaxially oriented planar polymer film.
Abstract:
Techniques for detecting one or more touches on a touch screen are disclosed. According to one aspect of the present invention, at least three predetermined points are provided, where each of the at least three predetermined points has a wave receptor mounted thereat. When a touch to the touch screen happens, acoustic wave signals generated at the touch point are received by the wave receptors. The distances between the touch point and the three predetermined points are calculated according to the acoustic wave signals. At least three equations of circles are constructed to respectively employ the three predetermined points as their centers, the distances between the touch point and the at least three predetermined points as their radiuses. The coordinates of the touch point according to a common solution of the at least three equations are then determined. The same approach can be similarly applied to determining multiple touches on a touch screen.
Abstract:
A method of crimping a stent to a support element is disclosed, the method comprising: positioning a polymeric stent around a support element; heating the stent, wherein the heated stent is above ambient temperature; and allowing the heated stent to radially contract onto the support element, wherein the heated stent radially contracts at least partially due to heating the stent.
Abstract:
An air cooled switching unit for a motor drive includes a plurality electrical switches and a plurality of heat pipe assemblies. Each heat pipe assembly includes a thermally and electrically conductive evaporator, a condenser, and at least one heat pipe extending between the evaporator and condenser. Each of the switches is abutted with an evaporator of at least one of the heat pipe assemblies for conduction of both electrical power and heat between the switch and the evaporator. Each heat pipe assembly further includes an electrically conductive base abutted with the evaporator, and the air cooled switching unit further includes a plurality of power lugs each connected to a base of a respective one of the heat pipe assemblies for input or output of electrical power to the base and the evaporator plate abutted with the base. Each heat pipe assembly includes at least one evaporator defined by a metallic plate. The condenser of each heat pipe assembly includes a plurality of parallel spaced-apart cooling fins. The at least one heat pipe of each heat pipe assembly includes a sealed pipe containing a phase-change material for transferring heat from said evaporator to said condenser. The at least one heat pipe includes a first end located in the metallic plate and a second end in contact with and extending through the cooling fins of the condenser. A temperature feedback system derives air flow velocity through the condenser.