Abstract:
A microelectronic assembly is provided which can include an element including a first dielectric layer and a second dielectric layer overlying the first dielectric layer, the second dielectric layer having an exposed surface defining an exposed major surface of the element. A plurality of substantially rigid metal posts can project beyond the exposed surface, the metal posts having ends remote from the exposed surface. The microelectronic assembly can include a microelectronic device which has bond pads and overlies the element. The microelectronic device can have a major surface which confronts the posts. Connections electrically connect the ends of the metal posts with the bond pads of the microelectronic device.
Abstract:
A method of treating a component can include providing a component including a plurality of metallic posts extending generally parallel to one another. The providing step can be performed so that the posts have solder on the tips of the posts but not covering other portions of the posts. The method can include reflowing the solder provided on the posts so that the solder coats the posts. The providing step may be performed so that, prior to the reflowing step, the solder covers only the tips of the posts. The providing step can include depositing portions of the solder on a surface of a metallic sheet and etching the sheet from the surface. The plurality of posts may comprise elongated posts.
Abstract:
A method of making a microelectronic assembly includes providing a first microelectronic element having a first surface and a plurality of contacts exposed at the first surface; providing a second microelectronic element having a top surface and a plurality of contacts exposed at the top surface, forming a plurality of conductive elastomeric posts that connect at least some of the contacts of the first microelectronic element to at least some of the contacts of the second microelectronic element, and injecting a compliant material between the first surface of the first microelectronic element and the top surface of the second microelectronic element to form a compliant layer.
Abstract:
A method of electrically connecting a microelectronic component having a first surface bearing a plurality of contacts. The method including the steps of forming a subassembly by juxtaposing a connection component having a support structure and a plurality of elongated posts extending substantially parallel to one another from a first surface of the support structure with the microelectronic component so that the support structure overlies the surface of the component with the posts extending away from the component and electrically connecting the posts to the contacts of the microelectronic component.
Abstract:
A microelectronic package includes a microelectronic element having contacts accessible at a surface thereof, a layer overlying the microelectronic element, the layer having a first surface and a sloping peripheral edge extending away from the first surface of the layer, and conductive terminals overlying the microelectronic element, wherein the layer supports the conductive terminals over the microelectronic element. The package also includes conductive traces having first ends electrically connected with the contacts of the microelectronic element and second ends electrically connected with the conductive terminals, with at least one of the conductive traces having a section that is in contact with and extends along the sloping peripheral edge of the layer, and a compliant material disposed between the conductive terminals and the microelectronic element so that the conductive terminals are movable relative to the microelectronic element.
Abstract:
A cost effective, high performance, IC package assembly of the present invention comprises stair-stepped layers of redistribution circuits from at least one chip to terminals on any of multiple surfaces and levels of the IC package assembly. Critical path circuits of the assembly have no plated vias and are directly routed from interconnection terminals which are used to interconnect the package to the IC chip terminals by flip chip or wire bond methods.
Abstract:
A probe card for testing an electrical element such as a semiconductor wafer or a printed wiring board includes a substrate with circuitry thereon, an encapsulant layer overlying the substrate and a multiplicity of leads extending upwardly from the substrate through the encapsulant layer to terminals, the terminals projecting above the encapsulant layer. The probe card can be engaged with the electronic element so that the tips of the leads bear on the contact pads of the electronic element, and so that the leads and encapsulant layer deform to accommodate irregularities in the electronic element or probe card. The card can be made by providing the substrate, a sacrificial layer and leads extending between the sacrificial layer and substrate, moving the substrate and sacrificial layer away from one another to deform the leads and injecting a curable material around the leads to form the encapsulant layer.
Abstract:
A method of making a microelectronic assembly includes juxtaposing a first element, such as a dielectric sheet having conductive leads thereon with a second element, such as a semiconductor chip, having contact thereon, and wire bonding the conductive leads on the first element to the contacts on the second element so that elongated bonding wires extend between the conductive leads and the contacts. After the wire bonding step, the first and second elements are moved through a pre-selected displacement relative to one another so as to deform the bonding wires. A flowable dielectric material may be introduced between the first and second elements and around the bonding wires during or after the moving step. The flowable material may be cured to form an encapsulant around at least a portion of the bonding wires.
Abstract:
A microelectronic assembly includes a microelectronic element having a first surface with a plurality of contacts accessible at the first surface, and a compliant layer over the first surface of the microelectronic element, the compliant layer including a plurality of bumped protrusions and openings adjacent the bumped protrusions for providing access to the contacts, wherein each bumped protrusion includes a top surface and at least one sloping edge. The microelectronic assembly also includes conductive terminals over the top surfaces of the bumped protrusions, and a plurality of conductive bond ribbons having first ends in engagement with the contacts, second ends in engagement with the terminals and intermediate sections extending along the sloping edges for electrically interconnecting the contacts and the terminals.
Abstract:
Releasable leads having an elongated fixed portion extend over a surface defined by a dielectric material of a component or by a semiconductor body. A semiconductor element having a conductive structure connected to a set of contacts is also disclosed. A method of making the conductive structure is disclosed.