Abstract:
In an optical communication system containing a primary line and backup line card, a method includes providing interfaces for the primary and backup line card, each line card including a transmitter and receiver; and selecting output from the transmitter from either the primary or back up line card including selecting the backup line card when the primary line card encounters a failure.
Abstract:
Systems and methods for data transport, including receiving one or more signals into a reconfigurable and flexible rate shared rate multi-transponder network architecture, wherein the network architecture includes one or more transponders with multiple line side interfaces and one or more client side interfaces. The transponders are configured to map one or more signals to multiple parallel Virtual Ethernet Links, remove idle characters from the one or more signals, buffer one or more blocks of characters using an intermediate block buffer, activate and deactivate one or more portions of input/output electrical lanes of an Ethernet module, multiplex and demultiplex the one or more signals to and from the input/output electrical lanes to enable sharing of a single optical transceiver by multiple independent signals, and insert blocks of idle characters to enable transmission over a lower rate transmission pipe.
Abstract:
A method for reducing optical components at a receiver which include converting an input signal at a receiver to include an interleaving of alternate signal diversity components, the signal diversity components including phase diversity when the converting includes 0 and 90 degree interleaving and the signal diversity components include polarization diversity interleaving when the converting includes interleaved orthogonal polarizations, and combining the signal diversity components for enabling a single photo detection at the receiver to detect the alternative signal diversity components for subsequent analog-to-digital conversion.
Abstract:
A method for solving a cloud embedding problem includes first mapping virtual links over physical links followed by virtual nodes over physical nodes. The inventive method entails an efficient procedure, namely network followed by compute load balancing (NCLB), that first maps virtual links over physical links while balancing network resources, and finally, maps virtual nodes over physical nodes while balancing different types of computational resources.
Abstract:
The invention uses a PRBS pattern generated by transmitter (serializer) as training At the receiver side, following receiver outputs, a synchronous capturing module is used to capture multiple lanes simultaneously. The captured data is used to calculate the PRBS distance for different lanes. After the distances are obtained, the one with largest latency is used as a reference, to calculate the relative latency with each other lane. This relative latency is further used to calculate the number of shifts for Barrel Shifter and word shifter.
Abstract:
Systems and methods for data transport, comprising encoding one or more streams of input data with one or more low density parity check (LDPC) encoders, corresponding to one or more polarization/spatial mode branches. One or more encoded data streams are mapped to symbols, wherein the mapper is configured to assign bits of the symbols to a signal constellation and to associate the bits of the symbols with signal constellation points. A signal constellation is formulated which minimizes a mean-square error of the signal constellation representing the source. The optimum signal constellation size is adjusted to improve transmission quality by adjusting the signal constellation an optical signal to noise ratio (OSNR), wherein the signal constellation is selected using a look-up table (LUT); and the symbols are modulated in accordance with the output of the mapper onto a transmission medium.
Abstract:
There are provided an optical transponder having a first end and a second end, as well as an electric switch having the transponder. The transponder includes an optical interface, at the first end, having a variable rate optical transmitter and a variable rate optical receiver to respectively transmit and receive signals using at least one of different bandwidths and different bit rates. The transponder further includes an electrical interface, at the second end, having an electrical interface throughput matching an optical capacity of the optical interface. The transponder also includes a processor for controlling the optical capacity.
Abstract:
A submarine network includes a submarine network with a branching unit BU for splitting or combining a signal between a main trunk path and a branch path for allowing signals from different paths to share a same fiber optic path, said BU and submarine network normally having a fixed and predetermined wavelength arrangement preventing reconfigurability of the submarine network, and a latching wavelength selective switch WSS or wavelength blocker WB in the branching unit for splitting or combining the signals between the main trunk path and branch path to enable a latching capability and enable reconfigurability of the branching unit BU, the latching WSSS being a bistable liquid crystal based material without moving parts for increased stability and lower power consumption over use of conventional mono-stable liquid crystal LC switches in a submarine network.
Abstract:
A communication system enabling a switching procedure for a multiple-input multiple-output orthogonal frequency division multiplexing (MIMO OFDM) based flexible rate intra-data center network DCN, includes a MIMO OFDM DCN with optical burst switching OBS capability, an optical burst switching OBS procedure for influencing the MIMO OFDM DCN, and a centralized control configuration coupled to the MIMO OFDM DCN and enabling a software defined network SDN configuration in the communication system.
Abstract:
An optical transceiver including a multi-direction variable transmitter including multiple outputs with different subcarriers being directed to different ones of the outputs to go to different directions in a network, and a multi-direction variable receiver for receiving multiple inputs thereby enabling transmission direction in a network with the transceiver at subcarrier granularity and avoiding entire super-channel granularity and enabling unused subcarriers to be utilized for traffic in other directions or destinations and making switching granularity finer for flexibility in the network.