Abstract:
A method and apparatus capable of adjusting a signal level in a wireless communication system are provided. An electronic device includes an oscillator configured to output a local oscillator (LO) signal, a mixer configured to convert a frequency band of a first signal based on the LO signal and output a third signal, and a feedback circuit configured to output a feedback signal for adjusting a magnitude of the LO signal, wherein the mixer is further configured to adjust a magnitude of LO signal based on the feedback signal.
Abstract:
An electrolyte including a polymer including a repeating unit represented by Formula 1 and a lithium salt. Also a lithium air battery and a method of preparing an electrolyte.
Abstract:
An electronic device and a method thereof, which supports fast wireless charging, are provided. The electronic device includes a wireless power circuit, and one or more processors which are functionally connected with the wireless power circuit, wherein the one or more processors are configured to execute detecting an external electronic device through the wireless power circuit, determining wireless power information corresponding to the external electronic device, determining whether the external electronic device supports a first charging power or a second charging power, at least partially based on the wireless power information, providing the first charging power to the external electronic device through the wireless power circuit, at least partially based on the determination that the external electronic device supports the first charging power, and providing the second charging power to the external electronic device through the wireless power circuit, at least partially based on the determination that the external electronic device supports the second charging power.
Abstract:
Provided is a method for detecting impurities in ammonium hydroxide. The method for detecting impurities in ammonium hydroxide includes preparing a potassium permanganate solution, preparing ammonium hydroxide, and adding the potassium permanganate solution several times to the ammonium hydroxide so as to detect impurities in the ammonium hydroxide. Potassium permanganate contained in the potassium permanganate solution is added for each time in the range of 0.0001 mol to 0.01 mol per 1 g of ammonia contained in the ammonium hydroxide.
Abstract:
An electronic device is provided. The electronic device includes a housing, a wireless charging coil disposed inside the housing, a fan disposed inside the housing and in proximity to the coil, a temperature sensor disposed inside the housing and in proximity to the coil, a wireless charging circuit having the coil and configured to transmit power wirelessly to an external device via the coil, and a control circuit electrically connected to the fan, the temperature sensor, and the wireless charging circuit. The control circuit may be configured to receive a signal from the external device, receive data related to a temperature of the coil from the temperature sensor, and control the fan at least partially on the basis of at least one of the signal and the data.
Abstract:
An electrolyte for a lithium air battery and lithium air battery including the electrolyte are provided. The electrolyte includes a compound represented by Formula 1 and a lithium salt:
Abstract:
A lithium air battery includes: a composite cathode including a porous material and a first electrolyte; an anode including lithium metal, and an oxygen blocking layer disposed between the composite cathode and the anode, wherein a weight ratio of the porous material and the first electrolyte in the composite cathode is less than about 1:3. Also a method of manufacturing the lithium air battery.
Abstract:
A compound including a cage-type structure of silsesquioxane wherein a group represented by Formula 1 or a salt thereof is directly linked to at least one silicon atom of the silsesquioxane, a composition including the compound, a composite formed therefrom, electrodes and an electrolyte membrane that include the composite, a method of preparing the compound, and a fuel cell including the electrodes and the electrolyte membrane. wherein in Formula 1, n is 1 or 2.
Abstract:
Provided are three-dimensional nonvolatile memory devices and methods of fabricating the same. The memory devices include semiconductor pillars penetrating interlayer insulating layers and conductive layers alternately stacked on a substrate and electrically connected to the substrate and floating gates selectively interposed between the semiconductor pillars and the conductive layers. The floating gates are formed in recesses in the conductive layers.
Abstract:
Provided are three-dimensional nonvolatile memory devices and methods of fabricating the same. The memory devices include semiconductor pillars penetrating interlayer insulating layers and conductive layers alternately stacked on a substrate and electrically connected to the substrate and floating gates selectively interposed between the semiconductor pillars and the conductive layers. The floating gates are formed in recesses in the conductive layers.