Abstract:
A fan exit guide vane assembly for a gas turbine engine includes a plurality of guide vanes having a pressure side and a suction side extending between a leading edge and a trailing edge. The vanes further include a span extending between a root and tip with a stagger angle defined as an angle between a longitudinal axis parallel to an engine axis of rotation and a line connecting the leading edge and the trailing edge that is less than about 15°.
Abstract:
An airfoil arrangement of a turbine engine according to an example of the present disclosure includes adjacent airfoils including pressure and suction sides extending in a radial direction from a 0% span position to a 100% span position. The airfoils have a relationship between a gap/chord ratio and span position that defines a curve with a gap/chord ratio having a portion with a negative slope.
Abstract:
An airfoil for a turbine engine includes pressure and suction sides extending in a radial direction from a 0% span position at an inner flow path location to a 100% span position at an airfoil tip. The airfoil has a relationship between an axial leading edge location and a span position that is at least a third order polynomial with a generally U-shaped curve having an initial negative slope followed by a positive slope. The positive slope leans aftward and the negative slope leans forward. The curve has a critical point in the range of 30-50% span position at which the curve changes from the negative slope to the positive slope. The curve is generally linear from 55% span to 75% span and has a positive slope that increases at a rate of about 0.0875 inch (2.22 mm) per 1% span, +/−0.04 inch (1.01 mm) per 1% span.
Abstract:
A gas turbine engine includes a combustion section arranged between a compressor section and a turbine section that extend in an axial direction. A fan section is arranged upstream from the compressor section. An airfoil is arranged in one of the fan section, the compressor section and the turbine section. The airfoil includes pressure and suction sides extending in a radial direction from a 0% span position at an inner flow path location to a 100% span position at an airfoil tip. The airfoil has a leading edge that is projected onto a plane from various views and the plane is perpendicular to a viewing direction which corresponds to the various views. The plane is parallel with the axial direction in a 0° view. The various views include the 0° view which projects into an axial plane in the axial direction. A 90° view projects into a tangential plane in a tangential direction normal to the axial direction and views between the 0° and 90° views. The airfoil has a maximum leading edge projection in a 20° to 40° view. The radial direction is normal to the axial and tangential directions.
Abstract:
An airfoil of a turbine engine includes pressure and suction sides and extends in a radial direction from a 0% span position to a 100% span position. The airfoil has a relationship between a camber angle and span position that defines a curve with the camber angle having a positive slope from 0% span to 100% span.
Abstract:
An airfoil of a turbine engine includes pressure and suction sides that extend in a radial direction from a 0% span position to a 100% span position. The airfoil has a relationship between a stagger angle and span position that defines a curve with a stagger angle that is greater than 35° from 0% span to at least 50% span.
Abstract:
A compressor airfoil of a turbine engine having a geared architecture includes pressure and suction sides that extend in a radial direction from a 0% span position to a 100% span position. The airfoil has a relationship between a tangential stacking offset and span position that defines a curve that is non-linear.
Abstract:
A gas turbine engine includes a core flow passage, a bypass flow passage, and a propulsor arranged at an inlet of the bypass flow passage and the core flow passage. The propulsor includes a row of propulsor blades. The row includes no more than 20 of the propulsor blades. The propulsor has a pressure ratio between about 1.2 and about 1.7 across the propulsor blades.
Abstract:
A gas turbine engine component is described. The gas turbine engine component includes an inner diameter edge, an outer diameter edge, a trailing edge and a leading edge. The leading edge has a positive (aft) aerodynamic sweep across substantially an entire span of the leading edge. The gas turbine engine component has a camber angle greater than 50 degrees across substantially an entire span of the component. The gas turbine engine component may have asymmetrical tangential stacking of the component in the radial direction.
Abstract:
An airfoil of a turbine engine according to an example of the present disclosure includes, among other things, pressure and suction sides extending in a radial direction from a 0% span position to a 100% span position. The airfoil has a relationship between a gap/chord ratio and span position that defines a curve with a gap/chord ratio having a portion with a negative slope.