Abstract:
An air conditioner includes an ion generator that provides ions and safe amounts of ozone. The ion generator includes a high voltage generator that provides a voltage potential difference between first and second electrode arrays. At least one of the first and second arrays is removable from the housing for cleaning.
Abstract:
Electro-kinetic air transporter and conditioner systems and methods are provided. A system includes a pin emitter electrode and a ring collector electrode located downstream from the emitter electrode. A driver electrode, which is preferably insulated, is located at least partially within an interior of said ring collector electrode. A high voltage source provides a voltage potential to at least one of said emitter electrode and said collector electrode to thereby provide a potential difference therebetween. The driver electrode may or may not be at a same voltage potential as the emitter electrode, but should be at a different voltage potential than the collector electrode. This description is not intended to be a complete description of, or limit the scope of, the invention. Other features, aspects, and objects of the invention can be obtained from a review of the specification, the figures, and the claims.
Abstract:
An electric energy conversion/storage system includes an ozone generating means (12) for producing an ozonized gas from a raw material gas containing oxygen by utilizing electric energy, an ozone adsorbing/desorbing means (15) for adsorbing ozone contained in the ozonized gas and desorbing ozone from the adsorbed state, a gas circulation system for causing the raw material gas and the ozonized gas to flow through the ozone generating means (12) and the ozone absorbing/desorbing means (15) while feeding back to the ozone generating means (12) a residual part of the oxygen gas remaining after adsorption of ozone, a coolant supply means (16) for cooling the ozone adsorbing/desorbing means (15), and an ozone discharging means (29, 30) for taking out an ozone containing gas which contains ozone molecules from the ozone adsorbing/desorbing means (15) to thereby supply the ozone containing gas to an ozone consumer (23). The ozone discharging means (29, 30) includes an ozone concentration control means (29) for enabling supply of the ozone containing gas to the ozone consumer (23) substantially at a predetermined ozone concentration and substantially at a predetermined constant flow rate.
Abstract:
An electro-kinetic electrostatic air conditioner includes a self-contained ion generator that provides electro-kinetically moved air with ions and safe amounts of ozone. The ion generator includes a high voltage pulse generator whose output pulses are coupled between first and second electrode arrays. Preferably the first array comprises one or more wire electrodes spaced staggeringly apart from a second array comprising hollow nullUnull-shaped electrodes. Preferably a ratio between effective area of an electrode in the second array compared to effective area of an electrode in the first array exceeds about 15:1 and preferably is about 20:1. An electric field produced by the high voltage pulses between the arrays produces an electrostatic flow of ionized air containing safe amounts of ozone. A bias electrode, electrically coupled to the second array electrodes, affects net polarity of ions generated. The outflow of ionized air and ozone is thus conditioned.
Abstract:
An electro-kinetic electro-static air conditioner includes a self-contained ion generator that provides electro-kinetically moved air with ions and safe amounts of ozone. The ion generator includes a high voltage pulse generator whose output pulses are coupled between first and second electrode arrays. Preferably the first array comprises one or more wire electrodes spaced staggeringly apart from a second array comprising hollow nullUnull-shaped electrodes. Preferably a ratio between effective area of an electrode in the second array compared to effective area of an electrode in the first array exceeds about 15:1 and preferably is about 20:1. An electric field produced by the high voltage pulses between the arrays produces an electrostatic flow of ionized air containing safe amounts of ozone. A bias electrode, electrically coupled to the second array electrodes, affects net polarity of ions generated. The outflow of ionized air and ozone is thus conditioned.
Abstract:
An electro-kinetic electrostatic air conditioner includes a mechanism to clean the wire-like electrodes in the first electrode array. A length of flexible Mylar type sheet material projects from the base of the second electrode array towards and beyond the first electrode array. The distal end of each sheet includes a slit that engages a corresponding wire-like electrode. As a user moves the second electrode array up or down within the conditioner housing, friction between slit edges and the wire-like electrode cleans the electrode surface. The sheet material may be biasedly pivotably attached to the base of the second electrode array, and may be urged away from and parallel to the wire-like electrodes when the conditioner is in use. Another embodiment includes a bead-like member having a through opening or channel, through which the wire-like electrode passes. As the conditioner is turned upside down and rightside up, friction between the opening in the bead-like member and wire-like electrode cleans the electrode surface. The bead-like member may be made of ceramic, glass, or even metal. The through channel may be symmetrically formed in the bead-like member, but preferably will be asymmetrical to create a mechanical moment and increased friction with the surface of the wire-like electrode being cleaned.
Abstract:
The present invention relates to an ozone generating device, comprising: a main body, having a cavity, on the lateral sides further having a plurality of inlet holes, which connect the cavity to the exterior to let in air, and on the top side having a plurality of outlet holes, which connect the cavity to the exterior to let out air with ozone; two electrodes, attached to the bottom and the top side of the cavity, for generating an electric discharge, so as to generate ozone in the cavity; and a heating device, installed below the electrode at the bottom side of the cavity, so as to heat the electrode and, indirectly, air in the cavity; wherein heating the first electrode by the heating device allows the operating voltage for generating an electric discharge to be reduced and heating the air with ozone within the cavity causes it to drift upward and to flow out of the cavity through the outlet holes.
Abstract:
There is provided a generator for forming ozone from air. The generator is adapted to be connected to a power source and comprises a unitary grid assembly which includes a first dielectric plate, a second dielectric plate spaced apart from the first dielectric plate, a wire mesh anode located between the first and the second dielectric plates, a third dielectric plate spaced from the second dielectric plate, a cathode plate located between the second and the third dielectric plates, and a pair of dielectric spacers located between the third dielectric plate and the cathode plate. The second dielectric plate, the pair of spaces and the cathode define a space for the passage of air and the collection of ozone formed from the air. The generator also comprises a blower positioned spaced from but adjacent the grid assembly, for moving the air through the space.
Abstract:
A fluid treatment system utilizes a circulating pump and an ozone generator arranged to receive atmospheric air and emit ozone-rich air into a delivery pipe which is connected to the upstream, suction side of the circulating pump, for introducing ozone-rich air to the fluid to be treated prior to the fluid entering the pump, whereupon complete mixing and dispersement of the ozone through the fluid is achieved. The ozone generator comprises at least one pair and preferably a plurality of pairs of spaced flat plate electrodes, one of each pair being of smaller longitudinal and lateral dimensions than the other and one of the electrodes of each pair also being provided with a plurality of dimpled projections on its surface facing the other electrode of its pair. Air passageways are arranged to extend between each electrode pair so as to expose the entire surface area of the electrodes to the air moving therebetween.
Abstract:
An ozone generator in which an air pump discharges air through a plurality of juxtaposed, successive, tubular housings, each of which has concentric wire mesh electrodes separated by dielectric tubes. A high a.c. potential, insufficient to cause a spark discharge, is imposed across the electrodes so that the oxygen of the air is progressively converted into ozone. The ozone laden air is directed through non-return valves into water flowing in a pipe for the purpose of destroying bacteria therein.