Abstract:
A system for generating water with predetermined amount of ozone dissolved and minimum entrained ozone. The system includes the use of an entrained gas separator assembly in series with the recirculating plumbing feeding and discharging ozone enriched water. The novel entrained gas separator assembly allows the water with dissolved ozone to pass through while extracting the entrained ozone for subsequent use or destruction. The entrained gas separator includes a secondary tank with an off gas valve for releasing the entrained gases including ozone. A cylindrical member with a helicoidal wall and centrally perforated tube defines a helicoidal path that forces the water down allowing the entrained ozone to pass through. The ozone concentration is kept within predetermined levels with the use of an ozone analyzer mounted close to the outlet of the holding or contact tank, as well as a number of sensors and bypass valves that are computer controlled. The ozone rich water from the tank's outlet is passed through a water conditioner prior to being delivered for use.
Abstract:
An aqueous oxidizing acidic cleaning solution or an aqueous oxidizing alkaline cleaning solution is produced by mixing an acidic or alkaline solution with ozone water. An aqueous reducing acidic cleaning solution or an aqueous reducing alkaline cleaning solution is produced by mixing an acidic or alkaline solution with hydrogen water. Each of these aqueous cleaning solutions has effective cleaning power and the ORP and pH values thereof are separately controlled. Therefore, by selecting an appropriate aqueous cleaning solution according to the types of contaminants adhering to subjects during each manufacturing step, a plurality of types of contaminants can be removed by washing with one type of aqueous cleaning solution.
Abstract:
An ozone generating and ozone/water mixing apparatus includes an ozonizer controlled to convert oxygen into ozone, and an ozone/water mixer connected to the spout of a water tap and an ozone outlet of the ozonizer to receive ozone from the ozonizer and water from the water tap and to let intake water to be mixed with intake ozone, wherein the ozonizer includes a control circuit, an ozone generating unit controlled by the control circuit board to convert oxygen into ozone, a power supply circuit, which provides the necessary working power supply to the control circuit board and the ozone generating unit, a power switch, which transmits power supply from the power supply circuit to the control circuit board and the ozone generating unit, and a negative pressure inductor which is induced by a negative pressure to switch on the power switch when the water tap is opened.
Abstract:
An ozone and water mixing device comprised of a mixer, an actuator and an ozone generator, within, the mixer contains a standpipe connected to a lateral pipe to form a tee with one end of the standpipe connected to a tap; a screen mesh having a multiple of spiral provided in the end while the other end of the standpipe is an outlet for the ozone mixed with water the lateral pipe is connected to a one-way valve and farther to the outlet of the ozone generator. The actuator refers to a cylinder inserted with a plunger, and a spring at its bottom holding against the plunger which is linked to a switch of an electric circuit to activate the air inlet provided at the ozone generator, so that upon starting the water supply, the electric circuit is automatically activated allowing the ozone to be supplied from the ozone generator for the mixer to output the water mixed with ozone.
Abstract:
Methods of using ozone have been developed which sterilize instruments and medical wastes, oxidize organics found in wastewater, clean laundry, break down contaminants in soil into a form more readily digested by microbes, kill microorganisms present in food products, and destroy toxins present in food products. The preferred methods for killing microorganisms and destroying toxins use pressurized, humidified, and concentrated ozone produced by an electrochemical cell.
Abstract:
The invention relates to a method for treatment of fluids, the invention being characterized in that ozone is generated in the medium, which ozone is exposed to UV radiation at the same time as it is being generated, so that the ozone is broken down and free radicals are obtained. The invention also relates to an apparatus in accordance with the method, which apparatus comprises an enclosure (1) provided with at least one inlet (2) and at least one outlet (3). The apparatus is characterized in that an oxidizing member (4) is arranged in the enclosure (1) and generates ozone and at the same time breaks down the ozone to free radicals.
Abstract:
Ozonolysis is an effective process for improving the quality of produced water. A process for reducing the concentration of water soluble organic materials dissolved in produced water consists of introducing into the produced water a sufficient amount of gaseous ozone by use of a means for maximizing the collision frequency of ozone gas and the produced water. The temperature of the produced water is between from about 80.degree. to about 180.degree. F. The process renders a water effluent with markedly reduced oil and grease content. The water effluent can be used on land as a drinking or irrigation water supply source and may be safely discharged into navigable waters.
Abstract:
The Water Ozonating System can take several forms. Generically, the system incorporates at least the following: a water inlet means, a water storage tank, a device for introducing ozone into the water in the storage tank, and a device for dispensing water from the storage tank. A unique and particularly advantageous feature of the Water Ozonating System is that the ozonated water is kept entirely within a closed system until it is dispensed to the user. This maintains ozone in the water and in its active state (i.e., with its decontaminating and sterilizing effect). The system provides storage tank of ozone within the effluent water. This invention has many applications but not limited to the following: residential and office water purification; supermarket produce, vegetable, meat, poultry and fish, rinsing; dental operatory procedures; laboratories and commercial rinse water functions.
Abstract:
The invention provides methods for using gas and liquid phase cathodic depolarizers in an electrochemical cell having a cation exchange membrane in intimate contact with the anode and cathode. The electrochemical conversion of cathodic depolarizers at the cathode lowers the cell potential necessary to achieve a desired electrochemical conversion, such as ozone evolution, at the anode. When gaseous cathodic depolarizers, such as oxygen, are used, a gas diffusion cathode having the cation exchange membrane bonded thereto is preferred. When liquid phase cathodic depolarizers are used, the cathode may be a flow-by electrode, flow-through electrode, packed-bed electrode or a fluidized-bed electrode in intimate contact with the cation exchange membrane.
Abstract:
Water to be purified is directed into a first tank and is entrained with ozone. The ozonated water is channeled into a second tank and is exposed to ultraviolet radiation. An ultraviolet radiating lamp produces the ultraviolet radiation and also is exposed to a source of air for generating ozone. The generated ozone is conveyed to and entrained in the water in the first tank. A filter may be used to filter the water flowing into the first tank. A discharge conduit conveys the ozonated, irradiated and purified water to a point of use.