Abstract:
A cementitious composition includes (i) white Portland cement having a fineness of about 350-550 m2/kg, D90 between about 11-50 μm, and total combined iron oxide, manganese oxide, and chromium oxide
Abstract:
A hydraulic composition includes in relative parts by mass with respect to the cement 100 parts of cement the particles of which have a BET specific surface area comprised from 1.20 to 5 m2/g; 32 to 42 parts of water; 5 to 50 parts of a mineral addition A1 the particles of which have a D50 less than or equal to 6 μm and selected from silica fume, metakaolin, slag, pozzolans or mixtures thereof; 90 to 230 parts of sand the particles of which have a D50 greater than or equal to 50 μm and a D90 less than or equal to 3 mm; 0.0001 to 10 parts of a superplasticizer, the active material concentration of which is 15% by mass.
Abstract:
The present invention relates to epoxy curing agents which are obtained from the reaction of a polyalkylene polyether modified polyepoxide resin and a polyamine component. They polyamine component is a reaction product of a polyethylene polyamine having 3 to 10 nitrogen atoms, for example, diethylenetriamine (DETA), and at least one aldehyde having 1 to 8 carbon atoms, for example, formaldehyde. The epoxy curing agent may be used as part of a two component coating system in the curing of liquid or pre-dispersed curable epoxy resins.
Abstract:
A hydraulic binder includes in mass percent from 20 to 82% of a Portland cement the particles of which have a D50 comprised from 2 μm to 11 μm; from 15 to 56% of a non-pozzolanic mineral addition A1, the particles of which have a D50 from 1 to 150 μm and selected from among limestone additions, siliceous additions, siliceous limestone mineral additions, calcined shales, zeolites, burnt plant ashes, and mixtures thereof; from 4 to 30% of pozzolanic mineral addition A2, the particles of which have a D50 from 1 to 150 μm; a sum of the percentages of the Portland cement, the non-pozzolanic mineral addition A1 and the pozzolanic mineral addition A2 being comprised from 90 to 100%.
Abstract:
A concrete product is produced by providing red dune sand having a particle size of 45 microns or less and mixing the red dune sand with hydraulic cement in a ratio of about 30% of the cement being replaced by the red dune sand. The cement and red dune sand are then mixed with fine and course aggregate, water and a superplasticizer and cast after pouring into a mold cavity. Then within 24 hours of casting, the cast article is steam cured for 12 hours under atmospheric pressure, demolded and placed in an auto clave at 100% humidity. The temperature in the auto clave is raised to 180° C. within one to two hours and maintained at that temperature for 4 to 5 hours. The temperature also increases the pressure to about 10 bars. The pressure is released to reach atmospheric pressure within 20-30 minutes and the temperature reduced gradually, so that the article can be removed.
Abstract:
A concrete comprises in relative parts by weight: 100 of Portland cement; 0.25 to 9 of a defoamer; 0.001 to 6 of a surfactant; 0 to 230 of coarse gravel and/or fine gravel and/or shear enhancers; 0 to 85 of sand; 0 to 60 of a particulate pozzolanic or non-pozzolanic material or a mixture thereof having a mean particle size less than 15 micrometers; 0 to 80 of a particulate pozzolanic or non-pozzolanic material or a mixture thereof having a mean particle size between 15 to 88 micrometers; 0.3 to 18 of a water-reducing superplasticizer; 0 to 14 of polyethylene fibers; and 5 to 40 of water. An air mixing process using a tightly sealed mixing tool is used to thoroughly mix the constituents of the concrete before adding the water for curing. By adjusting relative parts in the composition, concretes of high and ultrahigh performance can be achieved efficiently.
Abstract:
A concrete comprises in relative parts by weight: 100 of Portland cement; 0.25 to 9 of a defoamer; 0.001 to 6 of a surfactant; 0 to 230 of coarse gravel and/or fine gravel and/or shear enhancers; 0 to 85 of sand; 0 to 60 of a particulate pozzolanic or non-pozzolanic material or a mixture thereof having a mean particle size less than 15 micrometers; 0 to 80 of a particulate pozzolanic or non-pozzolanic material or a mixture thereof having a mean particle size between 15 to 88 micrometers; 0.3 to 18 of a water-reducing superplasticizer; 0 to 14 of polyethylene fibers; and 5 to 40 of water. An air mixing process using a tightly sealed mixing tool is used to thoroughly mix the constituents of the concrete before adding the water for curing. By adjusting relative parts in the composition, concretes of high and ultrahigh performance can be achieved efficiently.
Abstract:
A concrete which includes in parts by weight: 100 Portland cement; 50 to 200 of a sand having a single grading with a D10 to D90 between 0.063 and 5 mm, or a mixture of sands, the finest sand having a D10 to D90 between 0.063 and 1 mm and the coarsest sand having a D10 to D90 between 1 and 4 mm; 10 to 50 of a particulate, substantially non-pozzolanic material having a mean particle size less than 15 μm; 0.1 to 10 of a water-reducing superplasticizer; and 10 to 30 of water; which concrete is substantially free of silica fume; the concrete having a compressive strength greater than 100 Mpa at 28 days.
Abstract:
The invention relates to an ultra-high-performance, self-compacting light-colored concrete comprising: a cement; a mixture of calcined bauxite sands of different grain sizes, the finest sand having an average grain size of less than 1 mm and the thickest sand having an average grain size of less than 10 mm; optionally silica fume, whereby 90% of the particles thereof have a size of less than 1 ?m and the average diameter is approximately 0.5 ?m, said silica fume representing at most 15 parts by weight per 100 parts of cement; an antifoaming agent; water-reducing superplasticiser; optionally fibers; and water. The inventive concrete also comprises: ultrafine calcium carbonate particles having a specific surface area that is equal to or greater than 10 m2/g and a form factor (IF) that is equal to or greater than 0.3 and, preferably, equal to or greater than 0.4. The grain size distribution of the cements, sands, ultrafine calcium carbonate particles and silica fume is such that at least three, and at most five, different grain size ranges are present, the ratio between the average diameter of one grain size range and that of the range immediately above is approximately 10. The invention also relates to the method of preparing one such concrete and to the uses thereof.
Abstract:
A formulation for obtaining a translucent concrete mixture comprising a mixture of polycarbonate and epoxy matrices, as well as glass fibres, optical fibres, colloidal silica, silica and Portland cement. The invention has greater mechanical strength properties than those of a standard concrete, with lower density and mechanical characteristics that enable same to be used in both a structural and architectonic manner. The formulation used to obtain the translucent concrete mixture comprises a type of concrete that is different from those currently available, which combines the advantages of existing concretes with translucency.