Abstract:
An acetabular cup prosthesis features conical pegs. The edge of each peg has an outer portion facing away from the edge of the other peg, and the outer portions of the pegs are parallel to or converging toward each other such that, when in use, the prosthesis can be securely inserted into a prepared bone cavity.
Abstract:
The invention relates to use of an additive as oxygen barrier in a plastic material wherein (a) the plastic material is a polyolefin, a polyolefin copolymer or a polystyrene, and the additive is (b) and optionally (c): (b) a compound of formula (I); wherein Ra represents C7-C20 alkyl, C6-C10 aryl, C4-C10 heteroaryl, wherein the heteroatoms are N, O and/or S, (C2-C6)-alkenylen-(C6-C10) aryl, C1-C6-alkylen-C6-C10-aryl, the aryl and heteroaryl radicals optionally being substituted by: hydroxyl, C1-C6-alkyl, C1-C6 alkoxyl, C6-C10 aryloxy, halogen, cyano, nitro, C6-C10-aryl, di(C1-C6)alkylamino, (C1-C6)alkylthio, C6-C10-arylthio, ═O, ═S, SO3H, SO2NR1R2, CO2R3, CONR1R2, NHCOR4, CO—C6-C10-aryl or a combination thereof, wherein R1, R2, R3, R4 are the same or different and independently represent hydrogen or Rb represents a group selected from the moieties of formula (II), (III), (IV), (V), (VI) and (VII); wherein each Rc can be the same or different and independently represents hydrogen, C1-C20 alkyl or C6-C10-aryl, (C2-C4) alkenylen (C6-C10) aryl, C1-C4-alkylen-C6-C10-aryl, the aryl radicals optionally being substituted by hydroxyl, C1-C4-alkyl, C1-C4 alkoxyl, C6-C10 aryloxy, Cl, cyano, C6-C10-aryl, or CO—C6-C10-aryl; Rd represents hydrogen, C1-30 alkyl, C6-C10-aryl or halogen; Re represents hydrogen, C1-30 alkyl, C6-C10-aryl or a halogen and can be on ortho (o) or meta (m) position to Rd; X can be O or N—Rf where Rf represents hydrogen, C1-C20 alkyl or phenyl; Y can be O or S; n is a number from 1 to 30; (c) a transition metal catalyst.
Abstract:
Provided is an additive masterbatch having excellent storage stability (agglomeration resistance), which also has reduced surface tackiness despite comprising a low-melting-point resin additive at a high concentration. The additive masterbatch of the present invention is characterized by comprising, with respect to 100 parts by mass of (A) a polyolefin resin, 65 to 300 parts by mass of (B) a resin additive having a melting point of not higher than 80° C.; and 0.8 to 24 parts by mass of (C) a benzotriazole-based ultraviolet absorber.
Abstract:
An oxygen-scavenging composition containing (I) a polymeric resin, (II) an organic oxidation additive based on a cyclic oxyimide, (III) a metal salt, preferably a transition metal salt, (IV) a sacrificial oxidizable substrate, and optionally, (V) an additional component; wherein components (I) and (IV) are different.
Abstract:
An oxygen-scavenging composition for food packaging applications comprising (I) a polymeric resin, (II) one or more oligomeric photosensitizers, (Ill) a metal salt, (IV) a sacrificial oxidizable substrate and optionally (V) additional components is provided.
Abstract:
The invention relates to compounds of the structure of formula I and II: where X is selected from the group consisting of O, S and NH; Y, A and B are independently selected from the group consisting of N and CH; D, E and F are independently selected from the group consisting of CH, N, O and S; the symbol ---- represents a single or a double bond; and R1, R2 and R3 are independently selected from the group consisting of H, electron withdrawing groups and electron releasing groups. In other embodiments, the compounds are used as oxygen scavengers and in barrier compositions and articles.
Abstract:
The present invention relates to methods for making cross-linked, oxidatively stable, and highly crystalline polymeric materials. The invention also provides methods of treating irradiation-cross-linked antioxidant-containing polymers and materials used therewith.
Abstract:
The present invention relates to an adhesive composition comprising (1) at least one polyol tri(meth)acrylate monomer selected from the group consisting of ditrimethylolpropane triacrylate (DiTMPTTA), tris-(2-hydroxyethyl)-isocyanurate triacrylate (THEICTA) dipentaerythritol triacrylate (DiPETA), ethoxylated trimethylolpropane triacrylate (TMPEOTA), propoxylated trimethylolpropane triacrylate, (TMPPOTA), ethoxylated pentaerythritol triacrylate (PETEOIA), propoxylated glyceryl triacrylate (GPTA), pentaerythritol triacrylate (PETA), trimethylolpropane triacrylate (TMPTA) and modified pentaerythritol triacrylate, triethyleneglycol trimethacrylate (TIEGTMA), tetraethyleneglycol trimethacrylate (TTEGTMA), polyethyleneglycol trimethacrylate hexane trimethacrylate (HTTMA) ethoxylated bisphenol A trimethacrylate, and trimethylolpropane trimethacrylate (TMPTMA), (2) at least one polyalkylene glycol mono(meth)acrylate monomer selected from the group consisting of polypropylene glycol monomethacrylate, polyethylene glycol monomethacrylate, polyethylene glycol-polypropylene glycol monomethacrylate, polypropylene glycol monoacrylate, polyethylene glycal monoacrylate, polypropylene glycol-polytrimethylene monoacrylate, polyethylene glycol-polytetramethylene glycol monomethacrylate, methoxypolyethylene glycol monomethacrylate, yerfluoroalkylethyl-polyoxyalkylene monomethacrylate, and combinations thereof, and (3) at least one radical initiator selected from the group of initiators sensitive to UV and/or blue radiation (photoinitiator) and thermal initiators (thermoinitiator). The adhesive composition is used for assembling elements made of plastic materials, like PMMA or SAN, or inorganic materials, like glass or metals, employed for manufacturing of devices for the distribution of containment of biological substances.
Abstract:
An oxygen-scavenging composition containing (I) a polymeric resin, (II) an organic oxidation additive based on a cyclic oxyimide, (III) a metal salt, preferably a transition metal salt, (IV) a sacrificial oxidizable substrate, and optionally, (V) an additional component; wherein components (I) and (IV) are different.
Abstract:
The present invention relates to combinations comprising hydrogen gas or a hydrogen donor agent and nanoclays comprising metallic cerium or cerium oxide particles. The invention also relates to compositions, nanocomposite materials and containers comprising these combinations. Additionally, the present invention relates to methods for obtaining these combinations and to the use thereof in packaging oxygen- and oxidation-sensitive products.