Abstract:
A method for producing clean energy from coal by feeding the coal in a reactor which is sealed to the atmosphere and moving the coal in the reactor while injecting oxygen to combust a portion of the coal in a substoichiometric mode to devolatilize the coal and yield a pressurized hydrogen rich raw gas which contains coal-derived cancer causing distillates and hydrocarbons together with a hot char. The distillates and the hydrocarbons are cracked to result in a cracked gas of essentially 2H2 and 1CO which after desulfurization becomes an ideal synthesis gas that can be synthesized to a liquid fuel for heating and transportation as an alternate to petroleum. The hot char is gasified in an air blown gasifier to produce a fuel gas and a molten slag which are jointly directed out of the gasifier through a common port which is maintained open for the free flow of both. The fuel gas and the molten slag separate from each other by flowing both gas and slag through a molten bath in a submerged manner in order to effectively scrub the fuel gas in the molten bath while it bubbles out of the bath. After separation the fuel gas is treated for sulfur removal and is in condition for use as an efficient gas turbine fuel for power generation by virtue of its mass, while producing very low NOx emissions when combusted. This fuel gas can also be used for raising steam and for clean burning in industrial heating. The method is capable of making coke and/or activated carbon.
Abstract:
Improvements in the catalytic processing of organic compounds for fuels and for other uses, and ways in order to better utilize the heat from the above processing and also from other sources.
Abstract:
A Pressure Relief System for attachment to pressurized vessels, containers, reactors, boilers, etc., utilizing liquid(s) as a working part of the Pressure Relief System.
Abstract:
A device for cleaning a gas, which combines together in a single unit an Inertial Separator and an Electrostatic Precipitator, so as to reduce or eliminate the shortcomings of the latter two types of devices when they are used separately, and to synergistically enhance the efficiency and effectiveness compared to when they are operated separately in series.
Abstract:
A coal gasification system has a pulse detonation device. The pulse detonation device is employed to discharge hot exhaust pulses into the coal gasifier. Also, a pulse detonation device discharges reverse flow pulses into a ceramic candle filter system to dislodge particulate build up on the candles. The pulse detonation device utilizes a rotatable core feed cylinder. The core feed cylinder is carried within an inner side wall of the stationary annular detonation chamber. The core feed cylinder has ports in the side wall that will register with ports in the inner side wall of the annular detonation chamber at least once each revolution. Fuel is introduced through valves mounted to the outer side wall of the annular detonation chamber.
Abstract:
A vessel having a floor which includes a tap outlet through which liquid contents in the vessel can be drained. The tap outlet features a shallow aperture circumscribed by first and second drip lines. The second drip line circumscribes the first drip line and is substantially coplanar with the first drip line. The two drip lines are connected one to the other by an annular hollow surface.
Abstract:
A method for restoring slagging conditions in a substoichiometric slagging combustor first requires the establishment of a threshold condition below which an unacceptable risk of slag outlet pluggage exists. Upon observation of current slagging conditions below the threshold conditions, substantially pure oxygen is injected into the combustion reaction zone to increase both zone temperature and reaction rate, leading to improved slagging conditions within the slagging combustor.
Abstract:
A slagging gasifier has a hearth comprising an annular solid cast structure formed from a high thermal conductivity metal such as copper and shaped to fit above a slag tap of the gasifier. The hearth is provided with one or more integrally formed passageways for circulating a coolant liquid therethrough and has an upper tundish surface with a slope of at least 10.degree. to the horizontal (preferably between 25.degree. and 45.degree.), across which tundish surface the molten slag flows downwardly and inwardly towards to slag tap. The annular structure may be formed from at least three sector-shaped cast parts secured together in situ in the gasifier.
Abstract:
Outlet structure of a powdered coal gasification generator. The bottom of the generator has an outlet throat with cylindrical walls that extend beyond the base. And, the walls terminate in an oblique manner with a face shaped to promote flow of slag from the generator to a single point in order to minimize reentrainment of slag into the gasification products.
Abstract:
A slag breaker of a pressure-type coal gasifier having a rotary grate with a plurality of grate segments, a generator bottom and an ash separator, has an inclined breaking plate arranged to be located immediately below the grate segment and prior to the ash separator and provided with a plurality of breaking projections, and a wear sheet arranged to be located on the generator bottom and provided with a plurality of breaking webs.