Abstract:
Diesel fuel compositions are provided that have unexpectedly beneficial cold flow properties. Methods for forming such diesel fuel compositions are also provided. The improved cold flow properties are achieved in part based on dewaxing of a distillate fraction of the composition. The improved cold flow properties are achieved further in part based on inclusion of a cold flow additive and fatty acid alkyl ester in the composition, such as fatty acid methyl ester.
Abstract:
Disclosed herein is a fuel additive comprising a mixture of (a) one or more fatty acid sorbitan esters and (b) one or more fatty acid monoesters of a polyol, wherein the one or more fatty acid sorbitan esters are present in an amount of about 0.05 wt. % to about 50 wt. %, based on the weight of the fuel additive, and the one or more fatty acid monoesters of a polyol are present in an amount of about 99.95 wt. % to about 50 wt. %, based on the weight of the fuel additive. Also disclosed is a fuel composition comprising a major amount of a fuel and minor amount of the fuel additive.
Abstract:
Disclosed herein is a method comprising the steps of (a) providing a fuel additive concentrate comprising (i) from about 5 to about 50 wt. %, based on the total weight of the fuel additive concentrate, of one or more fatty acid sorbitan esters, and (ii) about 10 to about 95 wt. %, based on the total weight of the fuel additive concentrate, of a fuel carrier fluid, and (b) storing the fuel additive concentrate at a low temperature environment. Also disclosed is a method operating an internal combustion engine with a fuel composition comprising (a) a major amount of a fuel, and (b) a minor amount of one or more fatty acid sorbitan esters in a low temperature environment.