Abstract:
In accordance with embodiments of the present disclosure, a slickline for use in well drilling and hydrocarbon recovery operations includes a cable and an intermediate layer disposed around the cable. The slickline also includes a doped polymeric coating layered around the intermediate layer. The doped polymeric coating is a different material from the intermediate layer, and the doped polymeric coating includes a polymeric material doped with an element that is detectable within the doped polymeric coating via a detection machine for purposes of determining wear or other aspects about the conditions of the slickline.
Abstract:
A self-wrapping, textile sleeve for routing and protecting elongate members from exposure to abrasion, thermal and other environmental conditions and method on construction thereof. The sleeve has an elongate wall constructed from interlaced yarns having interstices between adjacent yarns. At least one of the yarns is heat formed at one temperature to form the wall as a self-wrapping wall curling about a longitudinal axis of the sleeve. The wall has an inner surface providing a generally tubular cavity in which the elongate members are received. The wall also has an outer surface with a cured layer thereon. The cured layer is cured at the one temperature at which the yarns are heat formed into their self-wrapping configuration, wherein the cured layer fills the interstices between adjunct yarns to form an impervious layer on the wall.
Abstract:
In accordance with one embodiment, a line (cord) for use with a hunting decoy. The line includes a core formed of a first material and an outer jacket disposed around the core. The outer jacket is formed of a material that comprises plastisol and at least one metal.
Abstract:
The abrasion resistance of organic fiber based ropes and cords is increased by a outer woven cover of tapes of high molecular weight and more preferably ultrahigh molecular weight polyethylene
Abstract:
A high traction synthetic rope comprising a braided sheath (8) adhered to a synthetic strength member (7) by means of a first synthetic portion (9) and portions of material (23) adhered to the outside surface of the braided sheath by means of a second synthetic portion (21), where the portions of material (23) are formed of a substance that differs from a substance mainly forming the second synthetic portion (21) and exhibits greater friction when wet or with greasy conditions and measured on an iron surface than does the substance mainly forming the second synthetic portion. Also methods of manufacturing such a high traction synthetic rope are disclosed. The rope shows reliable traction on driven rotating elements during wet/greasy conditions.
Abstract:
A self-wrapping, textile sleeve for routing and protecting elongate members from exposure to abrasion, thermal and other environmental conditions and method on construction thereof. The sleeve has an elongate wall constructed from interlaced yarns having interstices between adjacent yarns. At least one of the yarns is heat formed at one temperature to form the wall as a self-wrapping wall curling about a longitudinal axis of the sleeve. The wall has an inner surface providing a generally tubular cavity in which the elongate members are received. The wall also has an outer surface with a cured layer thereon. The cured layer is cured at the one temperature at which the yarns are heat formed into their self-wrapping configuration, wherein the cured layer fills the interstices between adjunct yarns to form an impervious layer on the wall.
Abstract:
A rope having a cut-resistant jacket which includes a core comprised of a plurality of sub-ropes. The sub-ropes may be in a parallel strand configuration. The sub-ropes and the strands thereof may be made of fibers of a synthetic material, such as polyester, nylon, polypropylene, polyethylene, aramids, or acrylics. A cut-resistant jacket surrounds the core and is made from a material that has increased strength and/or abrasion resistance over the material of the core. The cut-resistant jacket may comprise steel wires and may further comprise braided steel wires or rope. The braided steel wires or rope may be covered with a plastic material for increased corrosion resistance. A filter layer may be disposed between the core and the cut-resistant jacket and may be wrapped around an outer surface of the core prior to the cut-resistant jacket being formed.
Abstract:
A traction member for use with driving pulleys, consisting of one or more load-bearing elements and a plastics part which is arranged between the load-bearing elements and a force-transmission surface of the traction member. The overall friction value results from the fact that the force-transmission surface, which comes into contact with the driving pulley, has at least two regions, and that these regions are formed from different materials A and B having different coefficients of friction. The regions are in the form of strips in the longitudinal direction of the traction member. The carrier material A is softer and has a higher coefficient of friction and the further materials B1, B2, B3 etc. are each harder and each have a lower coefficient of friction. Preferably, the materials A, B1, B2, B3 etc. are applied in one work step by extrusion.
Abstract:
According to some embodiments, a cable protection system to at least partially shield a cable from heat, fire, an impact or other potentially harmful event or occurrence comprises a first encompassing member configured for placement around the cable or cable bundle, wherein a first void is defined between the first encompassing member and an outside of the cable or cable bundle. The system additionally includes a second encompassing member positioned around the first encompassing member, wherein a second void is defined between the first encompassing member and the second encompassing member. Further, the system comprises one or more fill materials positioned within the second void. In some embodiments, the fill material comprises vermiculite, ceramic and/or one or more other materials. The first void permits the cable protection system to be slidably moved relative to the cable or cable bundle.
Abstract:
The invention relates to an abrasion resistant fabric containing ultra high molecular weight polyethylene (UHMW-PE) filaments and thermotropic liquid crystal polymers (LCP), the use thereof as protective means and to a protective cover containing said fabric. In particular, the invention relates to a rope and to a roundsling containing the protective cover.