Abstract:
A valve element for operative association with a valve seat in a passage in a body in which the valve element is mounted, in use, the valve element comprising first and second portions connected together by snap-fit means, the first portion being screw-threaded for mounting it in said body, and part of the second portion interrupting said screw-thread of the first portion.
Abstract:
A valve for regulating speed of operation of a door closer, includes an elongated hollow tubular body having a closed first end with driving provisions thereon, an open second end, and an orifice in its sidewall adjacent its closed first end; an endplug for a cylinder bore of the door closer, the endplug having an axial port in which the closed first end of the tubular body is rotatably supported and which provides a fluid tight seal about the outer surface of the tubular body; an annular valve seat adjacent the endplug, the seat being fixed against rotation, and having an open portion and a closed portion which provide varying degrees of occlusion of the orifice when the tubular body is rotated; and a seal plate check valve captured against a piston head and occluding an opening therein during closing, the plate also providing a seal about the outer surface of the tubular body near the open second end thereof.
Abstract:
A door closer (20) is attachable to a door (24) and is formed with a chamber (44) in which a piston element (50) is movable to move fluid from the chamber to a reservoir (82) upon opening of the door. After the door (24) has been opened to a position, for example, of sixty to seventy-five degrees, continued opening of the door causes the fluid to be compressed within the chamber (44) and to be directed only through a back check valve (95) to the reservoir (82). This results in the development of an adjustable "back check" condition to provide a counterforce to the continued opening of the door. The adjustable valve (95) includes a spring biased ball (144), the biasing of which must be overcome by the force of the fluid being compressed in the chamber (44) to allow for fluid to pass through the valve to the reservoir (82).The chamber (44) is formed partially by a spring tube (38) having slots (192) formed in the interior wall thereof which extends radially beyond convolutions of spring (52) contained within the tube. The slots (192) allow the fluid, and gas bubbles entrapped therein, to be moved beyond the convolutions of the spring (52) and to be moved unimpeded into the reservoir (82). Otherwise, the gas bubbles would be trapped in the chamber (44) and would deleteriously affect the operation of the door closer (20).
Abstract:
A door closer (20) is attachable to a door (24) and is formed with a chamber (44) in which a piston element (50) is movable to move fluid from the chamber to a reservoir (82) upon opening of the door. After the door (24) has been opened to a position, for example, of sixty to seventy-five degrees, continued opening of the door causes the fluid to be compressed within the chamber (44) and to be directed only through a back check valve (95) to the reservoir (82). This results in the development of an adjustable "back check" condition to provide a counterforce to the continued opening of the door. The adjustable valve (95) includes a spring biased ball (144), the biasing of which must be overcome by the force of the fluid being compressed in the chamber (44) to allow for fluid to pass through the valve to the reservoir (82).The chamber (44) is formed partially by a spring tube (38) having slots (192) formed in the interior wall thereof which extend radially beyond convolutions of spring (52) contained within the tube. The slots (192) allow the fluid, and gas bubbles entrapped therein, to be moved beyond the convolutions of the spring (52) and to be moved unimpeded into the reservoir (82). Otherwise, the gas bubbles would be trapped in the chamber (44) and would deleteriously affect the operation of the door closer (20).
Abstract:
A door closer for affording a controlled closing movement to a door including a return spring, an oil hydraulic piston and cylinder means, and a valve for generating a damping force when the door closers, said valve comprises a movable valve member for regulating oil flow through the valve, and a bimetal element connected with the movable valve member in response to the change in the temperature thereby attaining a substantially constant closing speed of the door irrespective to the change in the temperature.