Abstract:
The device for decelerating at least the closing rotation of a furniture hinge, comprises a container housing a first rotating friction element in contact at a first friction surface with the bottom of the container, a second fixed friction element overlapped to the first rotating friction element with which it is in contact at a second friction surface, and at least a third rotating friction element overlapped to the second fixed friction element with which it is in contact with at least a third friction surface, constraint means between the first friction element and the third friction element, a slider movable along a direction of translation at least during closing rotation and kinematic means for conversion of the translation of the slider into a rotation of the first and third friction element in such a manner as to create a dragging friction at the first, second and third friction surface.
Abstract:
Furniture hinge with at least two fitting parts for fixing to furniture parts, one of the fitting parts being designed as a hinge arm and at least one joint lever which pivots during the hinge movement and a rotation damper for damping a hinge movement, wherein a slide, movably mounted on the hinge arm may be driven by the pivotable joint lever and the slide acts on the rotation damper by means of a transmission mechanism (T).
Abstract:
In a rotary damper 1 including a cam surface 3f formed in a lower end surface of a large-diameter portion 3b of a rotor 3 and including a cam surface 4f formed in an upper end surface of a piston 4, the cam surface 4f being capable of contacting the cam surface 3f, the cam surfaces 3f, 4f pressed to contact each other by a coil spring 9 biasing the piston 4, the piston 4 is prohibited from being moved toward the large-diameter portion 3b beyond a predetermined second position. Coil spring 9 does not rotationally bias the piston 4. The coil spring 9 biases the piston 4 only such that the piston 4 approaches the large-diameter portion 3b.
Abstract:
The device for decelerating at least the closing rotation of a furniture hinge, comprises a container housing a first rotating friction element in contact at a first friction surface with the bottom of the container, a second fixed friction element overlapped to the first rotating friction element with which it is in contact at a second friction surface, and at least a third rotating friction element overlapped to the second fixed friction element with which it is in contact with at least a third friction surface, constraint means between the first friction element and the third friction element, a slider moveable along a direction of transition at least during the closing rotation and kinematic means for the conversion of the transition of the slider into a rotation of the first and third friction element in such a manner as to create a dragging friction at the first, second and third friction surface.
Abstract:
A hinge device prevents breakage of a structuring part from an increase in an internal pressure during overload. In the hinge device, first and second members are rotatable relative to each other. A case is fixed to either the first or second member, and a shaft body capable of rotating relative to the case is fixed to the other. A first chamber and a second chamber formed between the case and the shaft body are filled with viscous fluid. An orifice between the first and second chambers narrows a flow path for the viscous fluid moving from the first to second chamber, resisting rotation of the shaft body. A space region is provided in the shaft body, with a valve body movably placed therein. When pressure of the first chamber reaches a predetermined level, the valve body moves in the space region to increase the volume of the first chamber.
Abstract:
Furniture hinge with damping and/or braking device in alternative to those already existing and capable of guaranteeing an improved efficiency during the closing or opening operation of the doors, or other furniture parts, thanks to an improvement of the characteristics of rigidity and, simultaneously, elasticity of the means for transmitting motion from one of the rockers to the damping elements. The improved efficiency of this hinge is also obtained by increasing the friction surfaces with a viscous medium present in suitable areas of the hinge and by allowing regulation of the trend of the angular velocity of a circular shaped element, for example a disc, which acts as braking element in contact with the viscous medium.
Abstract:
A closure assembly for a vehicle pivotable between a closed position and a full open position, and a method of controlling its movement, is disclosed. The closure assembly includes a closure, a hinge mechanism attached to the closure, and a damper assembly. The damper assembly includes a damper actuator and a pneumatic closure damper, with the closure damper including a hollow bellows extending from a support base, an orifice and an end opposite the support base. The damper actuator is attached to the hinge mechanism and the support base is attached to the body structure such that the damper actuator is spaced from the end when the closure is in the closed position and the damper actuator is in contact with the end and compresses the bellows when the closure is in the full open position.
Abstract:
A rotation control device is configured so that a spring force of a torsion coil spring holds an attitude of a rotation body at a pre-advancement position corresponding to a post-return position (a), and a post-advancement position corresponding to a pre-return position (b), respectively. The rotation control device includes a first rotation part supporting one end of the torsion coil spring and supported on a fixed body so as to rotate as the rotation body rotates, and a second rotation part rotatably supported on the fixed body at a first rotation part side and supporting the other end of the torsion coil spring. When the first rotation part rotates, the second rotation part rotates together with the first rotation part. A wound portion of the torsion coil spring is most elastically deformed when the rotation body is at an intermediate position (c) between the position (a) and the position (b).
Abstract:
An opening/closing mechanism that can reduce falling impetus by gravity of a lid etc. opened and closed from vertically above and that facilitates lifting of the lid etc. against gravity. The opening/closing mechanism has two support bodies (7, 9) and an intermediate body (15) that are arranged so as to be relatively rotatable about a rotation axis, one damper (11R) placed between one support body (9) and the intermediate body (15) and producing resistance force against rotation in relative rotation in one direction of the two support bodies (7, 9), the other damper (11L) placed between the other support body (7) and the intermediate body (15) and producing resistance force against rotation in relative rotation in the other direction of the two support bodies (7, 9), and rotation limiting sections (29R, 29L) for respectively limiting the range of relative rotation between the two support bodies (7, 9) and the intermediate body (15).
Abstract:
An assembly to pivotally connect an external vehicle closure panel to a vehicle body includes a first hinge member that is constructed to be mounted to one of the external vehicle closure panel and the vehicle body, a second hinge member that is constructed to be mounted to the other of the external vehicle closure panel and the vehicle body, a shaft that is constructed to pivotally connect the first hinge member to the second hinge member, and a viscous rotary damper. The damper includes a cover, a rotor, and a viscous material. The shaft connects to the rotor such that rotation of the external vehicle closure panel between a closing position and an opening position causes relative motion between the rotor and the cover of the viscous damper to provide a resistance for controlling the velocity of the external vehicle closure member.