Abstract:
Test benches are useful, for example, for testing the operation of new or repaired pumps and motors. Current test benches involve directly driving the test pump with an electric motor, the horsepower of which must at least equal the horsepower rating of the test pump. The subject test bench utilizes an electric motor to drive a variable displacement pressure compensated pump. The discharge fluid from the pump drives a variable displacement hydraulic motor which in turn drives the test pump. The discharge fluid from the test pump is also directed to the hydraulic motor to add additional driving energy thereto in a regenerative manner. Thus, pumps having a higher horsepower rating several times greater than the horsepower rating of the electric motor can be effectively tested at their maximum rated displacement and pressure settings. The electric motor also drives another variable displacement pressure compensated pump, the discharge flow of which is directed to a test motor. The test motor in turn drives the variable displacement motor which thus functions as a pump to direct pressurized fluid to the variable displacement pump, which in turn functions as a motor to add additional power to the variable displacement pump through the electric motor in a regenerative manner. Thus, motors having a higher horsepower rating than the horsepower of the electric motor can also be tested on the same test bench.
Abstract:
A fluid operated pump displacement control system is provided wherein a self pressure is defined as a first control signal, and characterized in that an arbitrary switchable second control signal different from the first control signal is added to the first control signal, and a displacement is adapted to be switched to a displacement corresponding to a value of the second control signal as added to the first control signal. Further, a fluid operated pump displacement control system is provided comprising a control circuit connected to respective displacement control devices of variable displacement pumps and adapted to be operated by discharge pressure fluid from a discrete control pump. A variable torque control valve has a proportional electromagnetic solenoid provided in a circuit connecting the control circuit with the control pump and is adapted to produce a pressure reduction by a discharge fluid pressure of the variable displacement pumps and a propelling force of the proportional electromagnetic solenoid. A detector detects set output conditions of a prime mover for driving the variable displacement pumps, and current is supplied to the proportional electromagnetic solenoid according to the difference between a set reference rotational speed in each of the set output conditions and an actual rotational speed of the prime mover.
Abstract:
Disclosed herein is a device for controlling displacement of a variable displacement hydraulic pump comprising a displacement control system for receiving a discharge pressure of the variable displacement hydraulic pump and a discharge pressure of a fixed displacement hydraulic pump to control the displacement of the variable displacement hydraulic pump. The displacement control system comprises a servopiston including a helical compression spring for maintaining the variable displacement hydraulic pump at a maximum swash angle in a neutral position of associated operating valve, a servovalve including a spool for selectively controlling communication of hydraulic pressure between a control pump and a pair of fluid chambers defined in the servopiston, a control piston connected through a control lever pivotably supported by a pivot pin to the spool and the servopiston, at least two helical compression springs for biasing the control piston and controlling torque and flow so as to approximate same to a constant torque curve, a floating spring seat interposed between the helical compression springs, and a guide rod for guiding the floating spring seat and accommodated in a bore formed in the housing at a base portion thereof to define a pressure chamber pressurized by a biasing spring, the pressure chamber being communicated through a conduit to a discharge passage of the fixed displacement hydraulic pump.
Abstract:
The testing method and means of the present invention utilizes a conventional dynamometer for testing a hydraulic pump. The dynamometer is used to mechanically drive the pump and the hydraulic system of the dynamometer is used to supply the test pump with hydraulic fluid. A flow rater is connected to the tested pump for registering the pressure, flow rate, and temperature of the fluid being pumped by the test pump.