Abstract:
The present invention describes a method for producing a leak-tight vessel for holding a gas and/or liquid, comprising the steps of winding a heat-sealable thermoplastic barrier strip around a removable mandrel in such a way that each strip fragment overlaps with a substantially parallel strip fragment over at least a lateral overlapping distance, consolidating the overlapping strip fragments so as to form a gas and/or liquid tight layer, winding a fibrous material around the gas and/or liquid tight layer, thereby leaving an opening large enough for removing the mandrel.The invention also describes a leak-tight vessel produced in this way.
Abstract:
The present invention minimizes the assembly time of a dispenser head by inserting a rigid seal retaining element. The seal retaining element comes in different configurations thus allowing a variety of compressed gas cartridge dispensing options. Additional features are integrated into a molded dispenser head thus requiring fewer components to accomplish a useable dispenser thus reducing manufacturing costs. Reliance on conformable plastic allows for relaxed dimensional tolerances. This method of making a dispenser head can equally apply to threaded or non-threaded lance housings.
Abstract:
The present application provides a compressed gas cylinder stand for use with a compressed gas cylinder. The compressed gas cylinder stand may include a solid body with a cone-like shape and an aperture through the solid body. The aperture may be sized to accommodate the compressed gas cylinder.
Abstract:
Fluid storage and dispensing systems, and processes for supplying fluids for use thereof. Various arrangements of fluid storage and dispensing systems are described, involving permutations of the physical sorbent-containing fluid storage and dispensing vessels and internal regulator-equipped fluid storage and dispensing vessels. The systems and processes are applicable to a wide variety of end-use applications, including storage and dispensing of hazardous fluids with enhanced safety. In a specific end-use application, reagent gas is dispensed to a semiconductor manufacturing facility from a large-scale, fixedly positioned fluid storage and dispensing vessel containing physical sorbent holding gas at subatmospheric pressure, with such vessel being refillable from a safe gas source of refill gas, as disclosed herein.
Abstract:
The technical result of the proposed invention is the absorption of the impact energy. The technical result is achieved by using metal composite pressure cylinder that contains a closed thin metal sealing liner, a pressure overwrap made of composite material formed by a combination of groups of layers of reinforcing material made of high-modulus filaments orientated in spiral and circumferential directions, and a protective overwrap fabricated from a composite material made of a group of layers of reinforcing material made of low-modulus filaments. Herewith, an energy damping shock absorber is installed on the part of the surface of at least one of the bottoms, between the group of high-modulus reinforcing material of pressure overwrap and a group of the layers of low-modulus reinforcing material of protective overwrap; the above shock absorber comprises a rigid profiled frame on the side of protective overwrap and a damping device on the side of the pressure overwrap which are interconnected.
Abstract:
A portable liquid oxygen medical delivery system including a portable liquid oxygen delivery apparatus and a portable liquid oxygen recharger. The portable liquid oxygen delivery apparatus contains an initial quantity of liquid oxygen. The liquid oxygen delivery apparatus is sufficiently lightweight for portability by an ambulatory patient and has a fill port for receiving liquid oxygen. The liquid oxygen recharger stores a supplemental quantity of liquid oxygen and is also sufficiently lightweight for portability by an ambulatory individual. The liquid oxygen recharger has an interface for interfacing the liquid oxygen recharger with the portable liquid oxygen delivery apparatus for delivering the supplemental quantity of liquid oxygen to the portable liquid oxygen delivery apparatus.
Abstract:
On cold filling of pressure containers the filling gas is cooled before introduction into the pressure container to be filled. On completion of the filling process the pressure container is sealed in a pressure-tight manner. As the gas warms up the pressure in the pressure container rises rapidly. According to the invention, the pressure container is cooled before the introduction of the filling gas. The filling gas cools rapidly by means of heat transfer to the pressure container, whereby the filling capacity of the pressure container is considerably increased. Said method is particularly suitable for the filling of small tanks, in particular, for gas-driven vehicles and fuel-cell systems.
Abstract:
A support frame attachable to a pressurized gas cylinder pallet is disclosed. The support frame includes an adjustable first support member having a first brace and a second brace and a second support member having a third brace that extends from the first support member. The first support member is adjustable to move the first and second brace into engagement with the pallet and the third brace is slidable along the second support member to also move the third brace into engagement with the pallet. The three points of contact stabilize the support frame on the pallet such that a manifold can be connected to the support frame for connection to the cylinders on the pallet. Also disclosed is a kit including the support frame and the manifold.
Abstract:
[Object] A safe hydrogen storage tank in a highly reliable form where it is difficult for fatigue failure to occur is provided as a hydrogen storage tank where a cartridge is filled with a hydrogen occluding substance and contained within an integrally molded liner made of a metal.[Means for Achieving Object] A cartridge 10 is formed of a cartridge main body portion 11, a fixed side axial portion 13 and a free side axial portion 12, and an integrally molded liner 20 which is seamless is formed of a liner torso portion 21, a fixed side end portion 25 where a fixed side opening 25a is created via a portion in dome form 24 and a free side end portion 23 where a free side opening 23a for supporting a support plug 30 is created via a portion in dome form 22 in order to support a free side axial portion 12a, in such a manner that the fixed side opening 25a fixes and supports the fixed side axial portion 13 and is sealed by a sealing plug 40 while the free side opening 23a is sealed by the support plug 30, and the free side axial portion 12 is inserted into and supported by the recess 31 created in the support plug 30 so as to be moveable forward and backward in the direction of the axial line.