Abstract:
Systems, method and apparatuses of a building control sensor unit are disclosed. One apparatus includes a building control sensor unit that includes one or more sensors operative to sense an environmental condition of a structure, and a transceiver, wherein the transceiver includes an extended antenna, wherein the extended antenna includes a strand of memory metal. The apparatus further includes a controller, wherein the controller is operative to receive information from other building control sensor units or a central controller, and transmit information to the other building control sensor units or the central controller, wherein the building control sensor unit is configured such that when placed on or within a ceiling of the structure, the extended antenna extends into the structure.
Abstract:
Systems and methods for detecting and/or identifying target cells (e.g., bacteria) using engineered transduction particles are described herein. In some embodiments, a method includes mixing a quantity of transduction particles within a sample. The transduction particles are associated with a target cell. The transduction particles are non-replicative, and are engineered to include a nucleic acid molecule formulated to cause the target cell to produce a series of reporter molecules. The sample and the transduction particles are maintained to express the series of the reporter molecules when target cell is present in the sample. A signal associated with a quantity of the reporter molecules is received. In some embodiments, a magnitude of the signal is independent from a quantity of the transduction particle above a predetermined quantity.
Abstract:
The invention relates to a method for estimating drift in a solar radiation sensor (2) and for calibrating such a sensor, in which the radiation (GMES) measured by this sensor under its conditions of use and a radiation model (51) are taken into account.
Abstract:
In one embodiment there is provided an ambient lighting control system 1 comprising a controller (2) and a sensor node (3a). The sensor node (3a) comprises an arrangement including a light energy collecting element (8) such as a solar cell, an energy storage element (9) and a transmitter (11). The collecting element (8) charges the storage element (9). The transmitter (11) is arranged to transmit signals to the controller (2) using energy stored by the energy storage element (9), wherein the number of signals provided during a time interval to the controller (2) is proportional to a light intensity at the light energy collecting element (8). The controller (2) may thus output a control signal C for controlling an amount of ambient lighting, wherein the control signal is based on the determined number of received signals.
Abstract:
Boresight and other pointing errors are detected based on a monitor beam formed by diverting a portion of a probe beam. The monitor beam is directed to a position sensitive photodetector, and the optical power received at the position sensitive photodetector is used to estimate or correct such pointing errors.
Abstract:
According to one embodiment, a lighting control system includes a plurality of luminaire, a sensor device, a luminance sensor, and a lighting control unit. The luminaires are set in a lighting space. The sensor device detects presence of a person in the lighting space. The luminance sensor detects indirect luminance in a predetermined position in the lighting space by the luminaire. The lighting control unit subjects the luminaire to lighting control such that the indirect luminance detected by the luminance sensor does not fall below a predetermined value in a position where the sensor device detects presence of the person.
Abstract:
A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.
Abstract:
A system and method are provided for determining a light output of a light emitting diode (LED) in a scanner. The system includes a processor circuit to execute current control logic to obtain an optimum light output from the LED. The current control logic repeatedly applies increasing or decreasing currents to the LED until a saturation point is identified. This may be accomplished, for example, by comparing two measures of the light output of the LED for two different currents applied to the LED. When a difference equaling a predetermined threshold between the two measures is detected, then the saturation point is identified.
Abstract:
In an ultraviolet irradiating device in which a controller section and plural head portions used to cure ultraviolet curable resin used in the adhesion of a part are connected by an electric cable, each of the plural head portions has a sleeve-shaped housing and a light emitting diode which is arranged within this housing and emits a near-ultraviolet ray. The ultraviolet irradiating device is constructed such that the near-ultraviolet ray emitted from the light emitting diode is irradiated to the exterior from a near-ultraviolet ray irradiating port arranged on the tip face of the housing. The controller section has a power circuit and a control circuit for individually controlling the operations of the light emitting diodes of the plural head portions.
Abstract:
A network of radiation detection instruments, each having a small solid state radiation sensor module integrated into a cellular phone for providing radiation detection data and analysis directly to a user. The sensor module includes a solid-state crystal bonded to an ASIC readout providing a low cost, low power, light weight compact instrument to detect and measure radiation energies in the local ambient radiation field. In particular, the photon energy, time of event, and location of the detection instrument at the time of detection is recorded for real time transmission to a central data collection/analysis system. The collected data from the entire network of radiation detection instruments are combined by intelligent correlation/analysis algorithms which map the background radiation and detect, identify and track radiation anomalies in the region.