Abstract:
Methods and apparatus for operating a remote controlled device according to various aspects of the present invention may comprise inputting a command into a controller, transmitting the command to the server and relaying the command to the remote controlled device.
Abstract:
A self-propelled device determines an orientation for its movement based on a pre-determined reference frame. A controller device is operable by a user to control the self-propelled device. The controller device includes a user interface for controlling at least a direction of movement of the self-propelled device. The self-propelled device is configured to signal the controller device information that indicates the orientation of the self-propelled device. The controller device is configured to orient the user interface, based on the information signaled from the self-propelled device, to reflect the orientation of the self-propelled device.
Abstract:
A system for a remotely controlled device to determine its location and orientation is disclosed. The system includes a remotely controlled device, at least one sensor connected to the remotely controlled device, the at least one sensor comprising a processor, and at least one emitter, wherein the at least one sensor is configured to receive the signal from the at least one emitter and the processor is configured to determine the location and orientation of the remotely controlled device.
Abstract:
A system and method for operating robots in a robot competition. One embodiment of the system may include operator interfaces, where each operator interface is operable to control movement of a respective robot. A respective operator interface may be in communication with an associated operator radio, where each radio may have a low power RF output signal. A robot controller may be coupled to each robot in the robot competition. A robot radio may be coupled to a respective robot and in communication with a respective robot controller and operator radio. The robot radios may have a low power RF output signal while communicating with the respective operator radios. Alternatively, the radios may be short range radios, where a distance of communication may be a maximum of approximately 500 feet.
Abstract:
A toy vehicle includes a chassis, at least one light guide plate, at least one sensor unit and a driving unit. The at least one light guide plate includes a first portion and a second portion and is embedded into the chassis by the first portion. The at least one sensor unit is attached on the second portion of the at least one light guide plate and includes an emitter for emitting light, and a detector for receiving the reflected light and sending a signal according to a propagation delay of a light emitted from the emitter and received by the detector. The driving unit is configured for controlling the motion of the toy vehicle according to the signal outputted from the at least one sensor unit.
Abstract:
An apparatus and method of controlling a mobile body that travels around a sound source which generates a sound. This apparatus includes a traveling information producer for producing traveling information, which is information about traveling of the mobile body; a direction estimator for estimating a direction in which the mobile body is located with respect to the sound source; and a position determiner for determining a position of the mobile body using the traveling information and the estimated direction of the mobile body.
Abstract:
An apparatus uses a guide toy vehicle and has a smart floor environment. The smart floor environment is filled with location tags. Data can be found in a back-end database for location tags of an exhibit unit through a wireless network. The data comprise multimedia information to improve learning. Thus, with the present invention students can have better learning for achieving a default teaching goal.
Abstract:
Disclosed herein is a device for detecting lift of an autonomous mobile robot. The device comprises at least one detection unit to detect lift of the main body of the robot during driving of the robot and to generate and output the lift detection signal, and a controller to control driving of the robot, and to output the driving stop signal to a driving motor after generating a driving stop signal for stopping driving of the robot according to the lift detection signal transmitted from the detection unit. When the robot is lifted by a user, the device stops driving of the motor in response to the lift of the robot, thereby eliminating additional operation of the user to stop driving of the robot as well as protecting the user.
Abstract:
A robot is provided which is adapted to operate in association with an interface surface, which has disposed therein or thereon coded data indicative of an identity of the interface surface and of a plurality of reference points of the interface surface. The robot has movement means to allow the robot to move over the interface surface, a sensing device which senses at least some of the coded data and generates indicating data indicative of the identity of the interface surface and of a position of the robot on the interface surface, and communication means to transmit the indicating data to a computer system, which is programmed to select and execute a computer application based on at least the identity of the interface surface, and to receive movement instructions from the selected computer application. The behaviour of the robot is at least in part controlled by the selected computer application.