Abstract:
An application control system and method is adapted for use with an entertainment system of a type including a display such as a monitor or TV and having display functions. The control device may be conveniently held by a user and employs an imager. The control system and method images the screen of the TV or other display to detect distinctive markers displayed on the screen. This information is transmitted to the entertainment system for control of an application or is used by the control device to control an application.
Abstract:
A mobile device includes a position sensing unit, a remote control information obtainment unit, and a storage unit. Position information obtained by the position sensing unit is stored in the storage unit in association with remote control information. The mobile device further includes a directional space obtainment unit and an apparatus specification unit. The mobile device recognizes a direction pointed by a user using the mobile device, and enables operation of a terminal apparatus existing in the pointing direction.
Abstract:
The user interaction system comprises a portable pointing device (101) connected to a camera (102) and sending pictures to a digital signal processor (120), capable of recognizing an object (130) and a command given by the user (100) by moving the pointing device (101) in a specific way, and controlling an electrical apparatus (110) on the basis of this recognition. (Characteristic) pattern generation means (116) can be included in the system for facilitating object recognition.
Abstract:
Systems and methods according to the present invention provide a control framework for organizing, selecting and launching media items including graphical user interfaces coupled with an optional 3D control device for collection of the basic control primitives of point, click, scroll, hover and zoom which permit for easy and rapid selection of media items, e.g., movies, songs etc., from large or small collections. The remote control maps natural hand movements and gestures into relevant commands while the graphical display uses images, zooming for increased/decreased levels of detail and continuity of GUI objects to provide easy organization, selection and navigation among the media items by a user.
Abstract:
A remote control device and a recognition method thereof. The recognition method is adapted to the remote control device for generating a corresponding remote control signal to control an electronic device when the remote control device is moved. A sequence of sensing signal corresponding to movement of the remote control device is provided. The sequence of sensing signal is converted into a sequence of characteristic data. A sequential predetermined data matching the sequence of characteristic data is selected from a plurality of sequential predetermined data respectively corresponding to a respective remote control signal. The remote control signal corresponding to the matched sequential predetermined data is transmitted to the electronic device.
Abstract:
A remote control is provided including a plurality of sensors which sense movement of the remote control, and a control unit which turns on at least one sensor of the plurality of sensors and thereby senses movement of the remote control, and determines whether to turn on or off the remaining sensors according to whether or not the at least one sensor senses movement of the remote control. Consequently, battery consumption is reduced.
Abstract:
A remote control controls an audiovisual apparatus, such as a TV, using conventional physical inputs, such as buttons, or by controlled movement of the remote control. Circuitry connected to the physical inputs generates command signals for receipt by and operation of the apparatus. The command signals, such as On or Change Channel, correspond to control functions for the apparatus. The remote control also includes a motion sensor and motion circuitry connected to one another and constructed to generate at least some of the command signals when the body has been moved in predetermined manners for receipt by and operation of the apparatus. The remote control can therefore be operated using either the physical inputs or by moving the remote control in at least one of the predetermined manners. In some examples the motion sensor comprises a MEMS sensor.
Abstract:
A universal remote controller and a remote control method thereof are provided. The remote controller includes a display screen, a communication module configured to communicate with a plurality of devices, an input unit configured to receive a user command, a controlling unit configured to receive identification information from a device of the plurality of devices which is pointed at by the remote controller through the communication module, control the display screen to display a user interface customized for the device corresponding to the identification information, and receive information input through the user interface for communication with the device so that the remote controller can operate with the device.
Abstract:
A multi-directional remote control system and method is adapted for use with an entertainment system of a type including a display such as a monitor or TV and having display functions employing a mouse type control. The remote controller may be conveniently held in one hand of a user and still provides full mouse type functionality. The remote control system and method images the screen of the TV or other display to detect relative motion between the controller and screen. This position information is transmitted to the entertainment system for control of a cursor or other GUI interface.
Abstract:
In one preferred embodiment, an aircraft marshaling wand controller displays aircraft marshaling instructions to a pilot on a video display monitor on-board an aircraft, such as an aircraft on an aircraft carrier. When an aircraft marshal uses arm motion gestures to form aircraft marshaling instructions for the pilot on the aircraft, the wand controller of the present invention senses or detects those gesture motions, and generates digitized command signals representative of those gesture motions made by the aircraft marshal. A wireless transceiver then transmits those digitized command signals to the aircraft for display on the video monitor for viewing by the pilot.