Abstract:
A MOX nuclear fuel assembly employable either for a thermal neutron reactor employing UO2 as the nuclear fuel and light water as the moderator/coolant or for a thermal neutron reactor employing the MOX fuels as the nuclear fuel and light water as the moderator/coolant is provided with only one kind of MOX nuclear fuel rods each of which has relatively large magnitude of the enrichment grade of the fissionable Pu-s or Pu239 and Pu241, the quantity of the MOX nuclear fuel rods being relatively small.
Abstract:
A supercritical pressure water cooled reactor comprising: a reactor vessel including: a shell part for containing sub-critical pressure coolant, and an end part for containing supercritical-pressure coolant which is separated from the sub-critical pressure coolant in the reactor vessel. A core-support plate with through-holes, the core-support plate disposed-in and fixed to the reactor vessel so that the core-support plate divides space inside the reactor vessel into a supercritical-pressure portion and a sub-critical pressure portion. Fuel tubes with both open ends fixed to the through-holes, the open ends being communicated to the supercritical-pressure portion, outside of the fuel tubes being disposed in the sub-critical pressure portion; and nuclear fuel assemblies disposed in the fuel tubes.
Abstract:
A MOX nuclear fuel assembly employable either for a thermal neutron reactor employing UO2 as the nuclear fuel and light water as the moderator/coolant or for a thermal neutron reactor employing the MOX fuels as the nuclear fuel and light water as the moderator/coolant is provided with only one kind of MOX nuclear fuel rods each of which has relatively large magnitude of the enrichment grade of the fissionable Pu-s or Pu239 and Pu241, the quantity of the MOX nuclear fuel rods being relatively small.
Abstract:
A fuel assembly mechanical flow restriction apparatus for detecting failure in situ of nuclear fuel rods in a fuel assembly during reactor shutdown.
Abstract:
Method for controlling the amount of metal atoms deposited into an oxide layer present on a metal surface, which metal atoms increase the corrosion resistance of metal when present in the oxide film, wherein the metal surface is submerged in water at a selected temperature within the range of about to 200null to 550null F.; and a solution of a compound containing the metal which increases the corrosion resistance of the metal surface when present in the oxide film is injected into the water. The compound decomposes at the selected temperature to release atoms of the metal which incorporate in the oxide film at a desired loading
Abstract:
An apparatus for cleaning an irradiated nuclear fuel assembly includes a housing adapted to engage a nuclear fuel assembly. A set of ultrasonic transducers is positioned on the housing to supply radially emanating omnidirectional ultrasonic energy to remove deposits from the nuclear fuel assembly.
Abstract:
The invention provides improved shielding from high energy radiation, especially radiation in the form of electrons with kinetic energy from 0.1 to 10 million electron volts. The improvement is produced by the build-up of an electric field in the insulating material which acts to further attenuate or deflect the penetration of such radiation. The electric field builds up in the insulator and surrounding media because of the stopping of charge stemming from prior impinging radiation.
Abstract:
A neutron flux measuring apparatus, adapted to a boiling-water reactor (BWR) of a nuclear power plant and an advanced boiling-water reactor (ABWR) of a nuclear power plant, for measuring a neutron flux in a reactor pressure vessel, comprises a neutron flux detector assembly incorporating a local power range monitor detector assembly and a start-up range neutron monitor detector, a preamplifier amplifying a detector signal obtained from said start-up range neutron monitor detector, a start-up range neutron monitor operation unit operating, indicating and monitoring the amplified signal of the start-up range neutron monitor detector, and a local power range monitor operation unit operating, indicating and monitoring a signal obtained from the local power range monitor detector.
Abstract:
The present invention is to provide a reactor core that allows a nuclear plant to continuously operate for a long term period, for example 15 years or longer, without requiring any fuel exchange, reduces the duration and number of maintenance steps involved in regular plant inspections, markedly improves plant availability and economic efficiency, and is effective in terms of nuclear nonproliferation. A plurality of fuel assemblies 103, themselves obtained by arranging fuel rods 100 and water rods 107 in square lattices, are arranged in a square lattice at a certain pitch. The blades 102a of a cross-shaped (cruciform) control rod 102 in a cross section are inserted into four adjacent spaces formed by four fuel assemblies 100 facing each other. A value of 0.06 cm31 1 or greater is selected for the ratio (B/S) of the width (B) of each blade on the cruciform control rod 102 and the surface (S) of the fuel lattice defined by the surface area of a square whose side is equal to the pitch between the fuel assemblies 103.
Abstract:
A duct-type spacer grid for nuclear fuel assemblies is disclosed. In this spacer grid, a plurality of duct-shaped grid elements, individually having an octagonal cell, are closely arranged in parallel and are welded together, thus forming a matrix structure. The grid elements do not pass across the center of the subchannel of the assembly, thus effectively reducing pressure loss. Each of the grid elements is formed as an independent cell, and so they effectively resist against a lateral impact. A plurality of integral type swirl flow vanes, having different heights or same height, axially extend from the top of the grid to be positioned within each subchannel. The swirl flow vanes are bent outwardly, and so they do not contact the fuel rods during an insertion of the fuel rods into the cells. In the spacer grid, the fuel rods are supported within the cells by line contact springs without using any dimple. The spacer grid thus uniformly distributes its spring force on the fuel rods and almost completely prevents damage of the fuel rods due to fretting wear.