Abstract:
A chemically and thermally stable phosphor having unconventional light emitting properties and high light emitting intensity with an LED of 470 nm or less, includes an inorganic compound comprising: a crystal designated by A3(D,E)8X14, a crystal designated by Sr3Si8O4N10 or an inorganic crystal having the identical crystal structure of the Sr3Si8O4N10 crystal, which comprises A element, D element, X element, and optionally E element if necessary (A is one or more kinds selected from Li, Mg, Ca, Sr, and Ba; D is one or more kinds selected from Si, Ge, Sn, Ti, Zr, and Hf; X is one or more kinds selected from O, N, and F; and E is one or more kinds selected from B, Al, Ga, In, Sc, Y, and La.), into which M element is solid-solved (M is one or more kinds selected from Mn, Ce, Pr, Nd, Sm, Eu, Tb, Dy, and Yb.).
Abstract translation:具有470nm或更小的LED的非常规发光特性和高发光强度的化学和热稳定的荧光体包括无机化合物,其包含:由A3(D,E)8X14表示的晶体,由Sr 3 Si 8 O 4 N 10表示的晶体或 如果需要,包含A元素,D元素,X元素和任选的E元素的Sr 3 Si 8 O 4 N 10晶体的晶体结构相同的无机结晶(A是选自Li,Mg,Ca,Sr和Ba中的一种或多种; D 是选自Si,Ge,Sn,Ti,Zr和Hf中的一种或多种; X是选自O,N和F中的一种或多种; E是选自B,Al,Ga, (M,Mn,Ce,Pr,Nd,Sm,Eu,Tb,Dy和Yb中的一种或多种)固溶于其中的M元素(In,Sc,Y和La))。
Abstract:
Provided is a rare earth phosphovanadate phosphor that is excellent in emission characteristics and preferred also from the viewpoint of industrial production, and a production method thereof. The rare earth phosphovanadate phosphor includes at least a primary particle in which a linear uneven pattern including a plurality of ridge lines parallel to each other is formed on the surface of the particle. Further, the method for producing a rare earth phosphovanadate phosphor involves generating a mixture of a rare earth phosphovanadate phosphor and an alkali metal vanadate, and removing the alkali metal vanadate.
Abstract:
Provided is a high-efficiency plasma display panel having short decay time and high luminance and color purity. The plasma display panel includes a green phosphor layer emitting visible light when excited with vacuum ultraviolet rays, in which the green phosphor layer is formed of a green phosphor containing 30% by weight or more and 60% by weight or less of a phosphor represented by a general formula: dZnO.(2−d)MnO.eSiO2 (1.80≦d≦1.90, 1.00≦e≦1.02) and one of a phosphor represented by a general formula: aYO3/2.(3−a)CeO3/2.bAlO3/2.cGaO3/2.fWO3 (2.80≦a≦2.99, 3.00≦b≦5.00, 0≦c≦2.00, 0.003≦f≦0.020, where 4.00≦b+c≦5.00) and a phosphor represented by a general formula: aYO3/2.(3−a)CeO3/2.bAlO3/2.cGaO3/2.gK2WO4 (2.80≦a≦2.99, 3.00≦b≦5.00, 0≦c≦2.00, 0.003≦g≦0.015, where 4.00≦b+c≦5.00).
Abstract translation:提供了具有短衰减时间和高亮度和色纯度的高效等离子体显示面板。 等离子体显示面板包括在用真空紫外线激发时发出可见光的绿色荧光体层,其中绿色荧光体层由含有30重量%以上且60重量%以下的绿色荧光体形成,荧光体以 通式为dZnO(2-d)MnO.eSiO 2(1.80×d @ 1.90,1.00e @ e @ 1.02)和由通式aYO 3/2表示的荧光体之一(3-a)CeO 3/2 .bAlO3 / 2.cGaO3 / 2.fWO3(2.80 @ a @ 2.99,3.00 @ b @ 5.00,0 @ c @ 2.00,0.003 @ f @ 0.020,其中4.00 @ b + c @ 5.00)和由 通式:aYO3 / 2。(3-a)CeO3 / 2.bAlO3 / 2.cGaO3 / 2.gK2WO4(2.80 @ a @ 2.99,3.00 @ b @ 5.00,0 @ c @ 2.00,0.003 @ g @ 0.015, 其中4.00 @ b + c @ 5.00)。
Abstract:
A phosphor layer of a plasma display panel has a green phosphor layer containing Zn2SiO4:Mn particles and (Y1-x, Gdx)3(Al1-y, Gay)5O12:Ce particles. The Zn2SiO4:Mn particles satisfy requirements of Zn3p/Si2p≧2.10 (1), and Zn2p/Si2p≧1.25 (2) wherein Zn3p represents an emission amount of photoelectrons emitted from a 3p orbit of a Zn element in a region up to 10 nm from surfaces of the particles, Zn2p represents an emission amount of photoelectrons emitted from a 2p orbit of the Zn element in a region up to 3 nm from the surfaces of the particles, and Si2p represents an emission amount of photoelectrons emitted from a 2p orbit of a Si element in the region up to 10 nm from the surfaces of the particles.
Abstract:
The blue phosphor of the present invention includes ZrO2 and a metal aluminate that is represented by the general formula aBaO.bSrO.(1−a−b)EuO.cMgO.dAlO3/2.eWO3, where 0.70≦a≦0.95, 0≦b≦0.15, 0.95≦c≦1.15, 9.00≦d≦11.00, 0.001≦e≦0.200, and a+b≦0.97 are satisfied. This blue phosphor has a ZrO2 content of 0.01 to 1.00% by weight. In the blue phosphor of the present invention, two peaks whose tops are located in a range of diffraction angle 2θ=13.0 to 13.6 degrees are present in an X-ray diffraction pattern obtained by measurement on the blue phosphor using an X-ray with a wavelength of 0.774 Å.
Abstract:
The present disclosure is a plasma display panel including a green phosphor layer. In this plasma display panel, the green phosphor layer includes a phosphor represented by a general formula: aYO3/2.(3−a)CeO3/2.bAlO3/2.cGaO3/2, where 2.80≦a≦2.99, 1.00≦b≦5.00, 0≦c≦4.00, and 4.00≦b+c≦5.00 are satisfied. In this phosphor, a peak whose peak top is located in a range of diffraction angle 2θ of not less than 16.7 degrees but not more than 16.9 degrees is present in an X-ray diffraction pattern obtained by measurement on the phosphor using an X-ray with a wavelength of 0.774 Å. The green phosphor layer also includes a phosphor represented by a general formula: dZnO.(2−d)MnO.eSiO2, where 1.80≦d≦1.90 and 1.00≦e≦1.02 are satisfied, in an amount of 30 wt % or more and 80 wt % or less of the total weight of green phosphors.
Abstract:
A plasma display panel includes first and second substrates opposite to each other; a plurality of address electrodes disposed on one surface of the first substrate; a plurality of display electrodes disposed in a perpendicular direction to the address electrodes on one surface of the second substrate; and red, green, and blue phosphor layers disposed in a discharge space between the first and second substrates. At least one of the phosphor layers include a phosphor coated with a metal.
Abstract:
A plasma display panel includes a front panel having a front substrate having a plurality of arrays of display electrodes each including a scanning electrode and a sustain electrode opposed to each other with a discharge gap being defined therebetween and a rear panel having a rear substrate opposed to a front substrate and having partition walls for partitioning a discharge space between the rear panel and the front panel, data electrodes formed between partition walls in such a fashion that the data electrodes intersect with the display electrodes, and phosphor layers formed between partition walls, wherein the rear panel forms partition walls so as to divide the discharge space in a plurality of regions along a direction parallel to the data electrodes, and blue phosphor layers are formed on boundary parts of the plural regions.
Abstract:
A plasma display panel has heights of barrier ribs prevented from abnormally increasing at positions where a phosphor dispensing process starts and ends, improving discharge performance and uniformity of a panel. A front substrate and a rear substrate face each other. Address electrodes and display electrodes extend separately from each other in a first direction and a second direction, respectively, in a space between the front substrate and the rear substrate, the first direction crossing the second direction. Barrier ribs partition a display area including a plurality of discharge cells in the space between the front substrate and the rear substrate. A non-display area is formed along a periphery of the display area. A phosphor layer is formed in each discharge cell. The non-display area includes a buffer area formed of at least a single region outside the display area.
Abstract:
The present invention provides a phosphor having high luminance, a property of low luminance degradation during driving of a light-emitting device, and chromaticity y comparable to that of BAM:Eu. The present invention is a phosphor represented by the general formula aAO.bEuO.DO.cSiO2, where A is at least one selected from Ca, Sr and Ba, D is at least one selected from Mg and Zn, and 2.970≦a≦3.500, 0.001≦b≦0.030, and 1.900≦c≦2.100 are satisfied. In this phosphor, a peak intensity at 1490 cm−1 is 0.02 to 0.8 when a peak intensity at 565 cm−1 is set to 1 in a spectrum obtained by measurement using photoacoustic spectroscopy.