Abstract:
A cathode for a magnetron having concave/convex portions on a surface of a cylindrical base metal with thermionic emitting materials being fixedly attached to concave portions from among the concave/convex portions. The convex portions of the concave/convex portions are arranged to be inclining. It is enabled to effectively protect thermionic emitting materials from inverse impulse of electrons or ions and from oscillation to thereby restrain consumption and omission of these thermionic emitting materials and to decrease higher harmonics of radiation.
Abstract:
The present invention relates to magnetrons and is aimed to improve effectiveness of using a working surface of field-electron emitters, to improve reliability of devices under conditions of increased mechanical action. These objects are solved in the design of a magnetron, comprising an anode and a cathode disposed co-axially inside the anode, the cathode comprising a secondary-electron emitter; a field-electron emitter and lateral flanges functioning as focusing shields, wherein at least one of the focusing shields is located from the secondary-electron emitter and comprises at least one field-electron emitter with a working end-face thereof facing the surface of the secondary-electron emitter.
Abstract:
The present invention relates to M-type microwave devices and is aimed to improve effectiveness of using a working surface of field-electron emitters, to improve their reliability while increasing stability of field emission and service life of the device. These objects are solved in the design of a M-type microwave device, comprising an anode encircling a cylindrical evacuated cavity and a cathode assembly disposed co-axially inside the anode, said cathode assembly comprising a cylindrical rod with its surfaces having elements in the form of planar (film) field-electron emitters and secondary-electron emitters that provide a primary and a secondary electron emission, respectively. In doing so, the normal to planar field-electron emitters is not parallel and makes therewith an angle of more than 0 degrees. An end-face of the field-electron emitter is protected by a tunnel-thin dielectric layer containing impurities of various materials and materials having a low work function.
Abstract:
A directly heated cathode comprises a metal tube having a filling of powdered metal which extends beyond the tube and in which is embedded an electrical wire which is coaxial and extensive with said the outer tube over part of its length. The electrical wire is coated with insulating material which is normally alumina. The tube, the metal powder filling and the wire are sintered together, giving a relatively robust structure.
Abstract:
A microwave power source for a microwave oven in which a microwave magnetron is supplied simultaneously with filament heater power and with anode voltage through an inductive reactance power supply and has end shields with peripheral depressions to suppress end shield secondary emission oscillations during warm-up of the filament which can rapidly collapse to produce rapid shutoff of anode current and, consequently, undesirably high voltage spikes across the magnetron.
Abstract:
Disclosed is a magnetron for a microwave oven which has a drain electrode (60) near a cathode (25) and in a position where an electron beam path is not interfered with. The cathode and the drain electrode are formed in spiral shapes. Turns of the cathode are alternately arranged with those of the drain electrode. When the magnetron is operated, the drain electrode is kept at the same potential as the cathode or is kept at a negative potential relative to that of the cathode. Therefore, positive ions in the vicinity of the cathode are collected at the drain electrode, thus decreasing high frequency noise.
Abstract:
The cathode of a coaxial magnetron has a cylindrical electron emitter with a radially extending projection which is asymmetrical with respect to the axis of the emitter. The projection suppresses starting of the magnetron in the TE.sub.121 mode and reduces starting jitter. In a preferred embodiment, the projection is in the form of a circumferential ridge extending around approximately one-half the circumference of the cylindrical surface and is centrally located thereon. The projection is oriented at 45 degrees with respect to the output of the magnetron. The power output of the magnetron is not substantially reduced.
Abstract:
In an electron gun having a control grid in contact with the face of the cathode, unwanted thermionic emission from the cathode can be effectively suppressed by applying a thin (1 micron) coating of boron nitride to the surface of the control grid. The boron nitride has low thermionic emission itself and, in addition, has an unusual ability to shed or eliminate any deposits of emissive material such as barium or its oxides which come in contact with the boron nitride layer. For optimum performance and longest lifetime, the boron nitride layer is applied over a pyrolytic graphite layer which may be the conductive grid itself.
Abstract:
A quick start magnetron comprising: an anode; a main cathode positioned adjacent the anode and providing by secondary electron emission due to electron back bombardment at least a major part of the electron current required for operation of the magnetron; and an electron gun employing a thermionic cathode of low thermal inertia arranged to direct a stream of electrons into the space between the anode and the main cathode to initiate operation of the magnetron.