Abstract:
A solar module includes a solar cell, a heat spreader layer disposed above the solar cell, and a cell interconnect disposed above the solar cell. From a top-down perspective, the heat spreader layer at least partially surrounds an exposed portion of the cell interconnect.
Abstract:
A method for integrating photovoltaic module includes providing a cover plate having a first surface and a second surface opposed to the first surface and supplying photovoltaic devices respectively formed on substrates. The photovoltaic devices include photovoltaic cells electrically coupled to each other, and each cell is characterized by a thin-film photovoltaic layer sandwiched between a first electrode material and a second electrode material. The first electrode material overlies the substrate and the second electrode material overlies the thin-film photovoltaic layer. The method further includes disposing the solar devices side by side to laminate with the cover plate by means of a first organic material filled between the second electrode material and the second surface. Each of the solar devices has a peripheral edge region being sealed by a second organic material. The method further includes electrically coupling the solar devices to each other.
Abstract:
Disclosed are a solar cell module and a method of fabricating the same. The solar cell module includes a substrate, a solar cell panel located on the substrate and including a plurality of solar cells, a buffer sheet on the solar cell panel, and a bus bar connected to one of the solar cells while passing through the buffer sheet. The method of fabricating a solar cell module includes forming a solar cell panel including a plurality of solar cells on a substrate, forming a buffer sheet including a bus bar connected to one of the solar cells, and locating the buffer sheet including the bus bar on the solar cell panel. The bus bar passes through the buffer sheet.
Abstract:
Disclosed are a solar cell apparatus, and a method of fabricating the same. The solar cell apparatus includes: dummy parts disposed on a support substrate; a plurality of solar cells disposed on the support substrate and disposed between the dummy parts; and a bus bar electrically connected to the solar cells and disposed between the support substrate and the dummy parts. Each of the solar cells and the dummy parts has a back electrode layer, a light absorbing layer, and a front electrode layer sequentially disposed on the support substrate.
Abstract:
A surface electrode (5) is installed on the light receiving surface of a solar cell element, the surface electrode (5) comprises three bus bar electrodes (5a) for extracting light-produced at the solar cell element to the outside and collecting finger electrodes (5b) connected to these bus bar electrodes (5a), and the bus bar electrodes (5a) are not less than 0.5 mm and not more than 2 mm in width and the finger electrodes (5b) are not less than 0.05 mm and not more than 0.1 mm in width. A high-efficient solar cell module can be obtained with substantially lowered resistance by increasing the number of bus bar electrode (5a) and thereby decreasing the lengths of the finger electrodes (5b).
Abstract:
A solar module with improved output characteristics is provided. The solar module (1) includes a photoelectric conversion unit (23), a solar cell (20) having a first electrode (21) and a second electrode (22), and a wiring member (32a). The wiring member (32a) has resin film (51) and wiring (52) arranged on the resin film (51). The wiring member (32a) has a first portion (32a1), a second portion (32a2) and a bent portion (32a3). The first portion (32a1) is arranged so the wiring (52) faces the solar cell (20) side. The first portion (32a1) is bonded to the solar cell (20). The second portion (32a2) is arranged so the wiring (52) faces the reverse side from the solar cell (20). The bent portion (32a3) connects the first portion (32a1) and the second portion (32a2). The bent portion (32a3) is arranged on the solar cell (20).
Abstract:
A buss bar strip for mounting to a solar panel to electrically connect to a series of electrical lines extending from solar cells. The buss bar strip can include a thin elongate flat flexible strip of insulative material having a longitudinal length. A predetermined pattern of elongate conductors can be longitudinally disposed on the insulative strip in at least two rows along the longitudinal length and electrically isolated from each other. Each conductor can have a predetermined position, length, and spacing from each other on the insulative strip for laterally electrically connecting to selected electrical lines from the solar cells at lateral electrical connection points located along the length of the conductor on exposed surfaces on the conductor.
Abstract:
The present invention provides an integrated wiring member (46, 47, 48) for a solar cell module, including a first wiring member, a second wiring member, and an insulating and protecting film for insulating the first wiring member and the second wiring member from each other. Herein, the first wiring member and the second wiring member are integrated with each other through the insulating and protecting film.
Abstract:
Disclosed are a thin film solar cell module and a manufacturing method thereof. The thin film solar cell comprises, from bottom to top, a first substrate, a first electrode, an absorber layer, and a second electrode layer. A current output region with a current output element disposed therein is formed at the thin film solar cell module. The absorber layer in the current output region is removed through a mask, thereby making the first electrode layer contacts directly there with the second electrode layer. The current output region can be formed at the positive electrode, the negative electrode, or both positive electrode and negative electrode simultaneously, of the thin film solar cell module, thereby increasing the contact area between the first electrode layer and the second electrode layer at the positive electrode and the negative electrode. The useless current, the resistance and the heat generated there are reduced.
Abstract:
To ensure connection reliability between a tab wire for a collector and a tab wire for a terminal box over a long period of time. This solar cell module is provided with: a solar cell, on one surface of which an electrode is arranged; and a tab wire, which includes a collector tab unit that is connected onto the electrode of the solar cell with a connection layer interposed therebetween and a terminal box tab unit that is provided on one surface of the solar cell with an insulating layer interposed therebetween, and in this structure, the collector tab unit and the terminal box tab unit are continuously formed via a folded part.