Abstract:
The invention concerns a novel magnetic actuator mechanism suitable for use on untethered microrobots. It relies on the interaction of magnetic bodies in an external magnetic field. By an oscillating field, the bodies are driven to oscillatory motion, and the energy stored in the oscillation is harnessed. The untethered wireless microactuator according to the invention comprises a mechanical system with at least two magnetic bodies resiliently connected to one another, wherein the mechanical system is capable of being oscillated, in particular driven to resonance, by an oscillating external magnetic field. The actuation system according to the invention comprises such a microrobot as well as a magnetic field generator with adjustable field direction and oscillation frequency. The actuation method comprises exciting two or more magnetic bodies with an oscillating magnetic field such that they perform mechanical oscillations, and harnessing this energy for propulsion of the device or to fulfill other tasks.
Abstract:
A linear motor is provided with a first member including a magnet and a second member including a coil facing the magnet, which are moved relative to each other. The second member includes a thermal conduction member, a thermal insulation member, the coil, and a first cooling unit, which are disposed in this order from the magnet side, and a second cooling unit configured to cool the thermal conduction member being disposed outside an area in which the magnet and the coil face each other.
Abstract:
A driving apparatus includes a mover having a magnet, and a stator having a coil. The driving apparatus is adapted to control the electric current to be applied to the coil to cause relative movement between the mover and the stator. The stator includes a coil holding member configured to hold the coil, a supporting member configured to support the coil holding member movably in first and second directions, a restriction member configured to restrict movement of the coil holding member in the first direction and to allow movement of the coil holding member in the second direction, and a biasing unit configured to press the coil holding member against the restriction member.
Abstract:
A linear motor including permanent magnets fixed on an elongate yoke such that polarities of the permanent magnets alternately change, and an armature having cores and coils wound on the respective cores, wherein each row of the permanent magnets and the armature are moved relative to each other along a straight line by application of an electric current to the coils, each core extending in a first direction perpendicular to the permanent magnet row, the cores being arranged in a second direction perpendicular to the first direction and disposed on the cores such that the coils on the cores adjacent to each other are arranged in a zigzag pattern and spaced apart from each other in the first direction, with a gap left therebetween, wherein the armature includes a heat pipe having opposite end portions one of which is inserted in the gap and the other of which extends outwardly of the gap, and fins fixed to the other end portion of the heat pipe.
Abstract:
A magnetically levitated monolithic stage positioning system includes linear three phase motors and coil windings connected to the monolithic stage that interact with a ferromagnetic base. The linear three phase motors may be excited to provide motion in an X-axis direction, motion in a Y-axis direction, and rotation about a Z-axis. The monolithic stage is levitated on an air bearing. The plurality of coil windings connected to the monolithic stage may serve to magnetically preload the air bearing. The plurality of coil windings may be excited to provide motion in a Z-axis direction and rotation of the monolithic stage about the X-axis and about the Y-axis.
Abstract:
An actuator includes: a magnetic field generator that has different magnetic poles alternately arranged in a plane, with a predetermined position being the center of the magnetic poles; a coil holder that holds a plurality of coils that are radially arranged and face the magnetic field generator, relative motion being caused between the magnetic field generator and the coil holder; and an electromagnetic conversion unit that detects the relative motion and is mounted on either the magnetic field generator or the coil holder.
Abstract:
A lens driving device includes a lens, a moving member that supports the lens, a stationary member that movably supports the moving member, a pitch drive mechanism that drives the moving member in the pitch correction direction, and a yaw drive mechanism that drives in the yaw correction direction. The pitch drive mechanism has first and second magnets provided to the stationary member, and first and second coils provided to the moving member. The yaw drive mechanism has a third magnet provided to the stationary member, and a third coil provided to the moving member. The first and second coils are arranged on opposite sides of the lens when viewed in a third direction that is perpendicular to the pitch and yaw correction directions, and the third coil is arranged on the same side as the first coil with respect to the lens when viewed in the third direction.
Abstract:
A planar motor (32) for positioning a stage (44) along a first axis, and along a second axis that is perpendicular to the first axis includes a conductor array (52) and a magnet array (34). The conductor array (52) includes at least one conductor (256). The magnet array (34) is positioned near the conductor array (52) and is spaced apart from the conductor array (52) along a third axis that is perpendicular to the first axis and the second axis. The magnet array (34) includes a first magnet unit (264) having a first diagonal magnet (D1) with a diagonal magnetization direction (268) that is diagonal to the first axis, the second axis and the third axis. This leads to strong magnetic fields above the magnet array (34) and strong force generation capability. Further, the planar motor (32) provided herein has less stray magnetic fields that extend beyond the magnet array (34) than a comparable prior art planar motor. Moreover, the first magnet unit (264) can include a second diagonal magnet (D2), a third diagonal magnet (D3), and a fourth diagonal magnet (D4) that cooperate to provide a first combined magnetic flux (276) that is somewhat aligned along the third axis in a first flux direction. In this embodiment, each diagonal magnet (D1) (D2) (D3) (D4) has the diagonal magnetization direction (268) that is diagonal to the first axis, the second axis and the third axis. Moreover, each diagonal magnet (D1) (D2) (D3) (D4) can be generally triangular wedge shaped and the diagonal magnets (D1) (D2) (D3) (D4) are arranged together into the shape of a parallelepiped.
Abstract:
Methods and apparatus for enabling a coil to be used to provide a net force along more than one axis are disclosed. According to one aspect of the present invention, an actuator includes a magnet assembly and a coil assembly. The coil assembly moves at least partially within the magnet arrangement, and includes a top coil half and a bottom coil half. The top coil half and the bottom coil half are independently controllable such that a first current applied to the top coil half may be independently applied from a second current applied to the bottom coil half.
Abstract:
An electromagnetic transducer including a stator and an armature, the armature defining a first axis and being driven to ride between first and second couplers back and forth relative to the stator along the first axis. The second coupler is configured to permit movement of the armature along a second axis orthogonal to the first axis.