Abstract:
The liquid crystal composition has a negative dielectric anisotropy, and contains a specific bicyclic compound having a large optical anisotropy and negative dielectric anisotropy as a first component and a specific tricyclic compound having a large dielectric anisotropy as a second component, and may contain a specific compound having a small viscosity as a third component, a specific compound having a large dielectric anisotropy and a small viscosity as a fourth component and a specific compound having a large dielectric anisotropy as a fifth component, and the liquid crystal display device includes the composition.
Abstract:
A LC compound and a LC mixture are provided. The LC mixture includes a compound represented by (I) and at least one compound selected from a group consisting of compounds represented by (II) to (IV): in which X1 is F, —Cl, —CF3, or —OCF3; R, R11, and R12 are independently H, a C1-C15 alkyl group, or a C2-C15 alkenyl group; A1 is 1,4-phenylene; A11, A12, A13, and A14 are independently selected from a group consisting of 1,4-phenylene, 1,4-cyclohexylene, and 2,5-tetrahydropyranylene; at least one of A2, A3, and A4 is 2,5-indanylene, and the others are independently selected from a group consisting of 1,4-phenylene, 1,4-cyclohexylene, and 2,5-tetrahydropyranylene; L1 is —F2CO—; Z11, Z12, and Z13 are independently a single bond, —O—, —F2CO—, or —COO—; m is 1; n, o and p are independently 0, 1, 2 or 3, and n+o+p≧3.
Abstract:
A liquid crystal composition and a liquid crystal display employing the same are provided. The liquid crystal composition includes: 100 parts by weight of at least one nematic liquid crystal; 1-20 parts by weight of at least one photosensitive chiral compound; and 1-20 parts by weight of at least one non-photosensitive chiral compound.
Abstract:
The main aim of the invention is to provide a polymerizable liquid crystal compound that has a liquid crystal phase with a wide temperature range centering at room temperature, has an excellent compatibility with another polymerizable liquid crystal compound, has an excellent solubility in an organic solvent and is polymerizable even in air by heat or light. A polymerizable liquid crystal compound represented by formula (1-1) or formula (1-2): wherein A1 and A2 are a divalent cyclic-structure group such as cyclohexylene and phenylene; Z1 is a bonding group such as a single bond and —O—; m is an integer from 1 to 5; Q1 and Q2 are alkylene having 1 to 20 carbons; R1 is fluorine, cyano, trifluoromethyl, trifluoromethoxy, alkyl, alkoxy and so forth; and Ra and Rb is hydrogen, halogen or alkyl.
Abstract:
A method for manufacturing a liquid crystal display panel by providing a first substrate and providing a first alignment film, providing a second substrate and providing a second alignment film; interposing a liquid crystal compound and at least two reactive mesogens between the first and second substrates, where the two reactive mesogens are selected from Chemical Formulas 1 and 2; curing the reactive mesogens to form a first mesogen layer; and a second mesogen layer, wherein wherein in Chemical Formula 1 A and B are each independently selected from the group consisting of and wherein at least one hydrogen atom of a naphthalene group is independently replaced with at least one of F and Cl and wherein in Chemical Formula 2, D is selected from at least one of and a single bond, wherein E and G are each independently selected from at least one of and wherein at least one hydrogen atom of a phenyl group are independently replaced with at least one of F and Cl.
Abstract:
An optical film is provided and has retardations satisfying relations (1) to (3): 0≦Re(550)≦10; (1) −25≦Rth(550)≦25; and (2) |I|+|II|+|III|+|IV|>0.5 (nm), (3) with definitions:I=Re(450)-Re(550);II=Re(650)-Re(550);III=Rth(450)-Rth(550); andIV=Rth(650)-Rth(550),wherein Re(450), Re(550) and Re(650) are in-plane retardations measured with lights of wavelength of 450, 550 and 650 nm, respectively; and Rth(450), Rth(550) and Rth(650) are retardations in a thickness direction of the optical film, which are measured with lights of wavelength of 450, 550 and 650 nm, respectively.
Abstract translation:提供了一种光学膜,并具有满足关系式(1)至(3)的延迟:0≦̸ Re(550)≦̸ 10; (1)-25≦̸ Rth(550)≦̸ 25; 和(2)| I | + | II | + | III | + | IV |> 0.5(nm),(3)具有定义:I = Re(450)-Re(550) II = Re(650)-Re(550); III = Rth(450)-Rth(550); 并且IV = Rth(650)-Rth(550),其中Re(450),Re(550)和Re(650)分别是用波长为450,550和650nm的光测量的面内延迟; 和Rth(450),Rth(550)和Rth(650)分别是在450,550和650nm的波长的光下测量的光学膜的厚度方向的延迟。
Abstract:
A liquid crystal composition is described, which contains a two-ring compound having a large optical anisotropy and a negatively large dielectric anisotropy as a first component, and a two-ring compound having a negatively large dielectric anisotropy and a small viscosity as a second component, and may further contain at least one of a compound having a small viscosity as a third component, a compound having a negatively large dielectric anisotropy as a fourth component, and a compound having an especially negatively large dielectric anisotropy as a fifth component. An AM liquid crystal display device containing the liquid crystal composition is also described.
Abstract:
Disclosed is a method of manufacturing a polarizing plate safe in operation, less burdensome on the environment, and with excellent adhesion to a polarizer, also disclosed are a polarizing plate manufactured using said method, and a liquid crystal display device using said polarizing plate. In the method of manufacturing a polarizing plate, a polarizing plate is manufactured in which a protective film which is hydrophilized by alkali saponification is laminated to at least one surface of the polarizer. In the method, said protective film contains cellulose acetate, and the surface free energy before alkali saponification of said protective film satisfies formula (SI), below, and the surface free energy after alkali saponification satisfies formula (SII), below. Formula (SI): 0.25≦γsh/γsp≦0.40; Formula (SII): 1.5≦γsh/γsp≦3.0 (wherein γsh represents the hydrogen bond component of the surface free energy, and γsp represents the dipole component).
Abstract:
Nematic liquid crystal cells with positive dielectric anisotropy that include colloidal suspensions having nanoclusters (e.g., CdTe nanoclusters, CdSe nanoclusters) that include a pure monolayer of ligands are provided as well as methods of inducing Freedericksz transitions in the nematic liquid crystal cells and methods of controlling the alignment of a liquid crystal.
Abstract:
A liquid crystal composition containing a polymerizable compound according to the present invention is used in a liquid crystal display element in which a liquid crystal alignment capability is provided through polymerization. The liquid crystal composition contains a polymerizable compound that polymerizes without a photopolymerization initiator or with an extremely small amount of photopolymerization initiator. Therefore, the alignment properties after the polymerization become more stable and the display characteristics do not degrade. Thus, the polymerizable compound is suitable as a practical component of the liquid crystal composition. A liquid crystal display element that uses the liquid crystal composition containing a polymerizable compound according to the present invention can be suitably used for VA and IPS liquid crystal display elements.